首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemically modified steroids (designer steroids), including tetrahydrogestrinone and norbolethone, pose a threat to the integrity of the sport community. These compounds have recently been detected in urine specimens from athletes, resulting in temporary or permanent suspension from amateur and/or professional competition. Triple quadrupole mass spectrometers enable doping control laboratories to screen for unknown, anabolic, androgenic steroids utilizing precursor ion scans. On the basis of common dissociation patterns of steroids with common structural features, characteristic product ions were selected to serve as diagnostic markers for previously unidentified drugs or drug metabolites in human urine samples. An assay was established to complement standard screening procedures. Urine specimens were enzymically hydrolyzed, partitioned into ether, concentrated, and analyzed by precursor ion scanning. Spectra from samples fortified with eight standard compounds (methyltestosterone, ethyltestosterone, 1-testosterone, gestrinone, dihydrogestrinone, tetrahydrogestrinone, norbolethone, and propyltrenbolone) and one deuterium-labeled analog (d(4)-tetrahydrogestrinone) at 50 ng/ml of urine, had precursor ion peaks other than those from common endogenous steroids. Subsequent product ion scan experiments on precursor ions of peaks of unknown origin provided structural identification of the unknown compounds.  相似文献   

2.
Unification of the screening protocols for a wide range of doping agents has become an important issue for doping control laboratories. This study presents the development and validation of a generic liquid chromatography/time‐of‐flight mass spectrometry (LC/TOFMS) screening method of 241 small molecule analytes from various categories of prohibited substances (stimulants, narcotics, diuretics, β2‐agonists, β‐blockers, hormone antagonists and modulators, glucocorticosteroids and anabolic agents). It is based on a single‐step liquid‐liquid extraction of hydrolyzed urine and the use of a rapid‐resolution liquid chromatography/high‐resolution time‐of‐flight mass spectrometric system acquiring continuous full scan data. Electrospray ionization in the positive mode was used. Validation parameters consisted of identification capability, limit of detection, specificity, ion suppression, extraction recovery, repeatability and mass accuracy. Detection criteria were established on the basis of retention time reproducibility and mass accuracy. The suitability of the methodology for doping control was demonstrated with positive urine samples. The preventive role of the method was proved by the case where full scan acquisition with accurate mass measurement allowed the retrospective reprocessing of acquired data from past doping control samples for the detection of a designer drug, the stimulant 4‐methyl‐2‐hexanamine, which resulted in re‐reporting a number of stored samples as positives for this particular substance, when, initially, they had been reported as negatives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The use of anabolic steroids as growth promoters for meat‐producing animals is banned within the European Union. However, screening for the illegal use of natural steroid hormones still represents a difficult challenge because of the high interindividual and physiological variability of the endogenous concentration levels in animals. In this context, the development of untargeted profiling approaches for identifying new relevant biomarkers of exposure and/or effect has been emerging for a couple of years. The present study deals with an untargeted metabolomics approach on the basis of GC‐MS aiming to reveal potential biomarkers signing a fraudulent administration of 4‐androstenedione (AED), an anabolic androgenic steroid chosen as template. After a sample preparation based on microextraction by packed sorbent, urinary profiles of the free and deglucurono‐conjugates urinary metabolites were acquired by GC‐MS in the full‐scan acquisition mode. Data processing and chemometric procedures highlighted 125 ions, allowing discrimination between samples collected before and after an administration of 4‐AED. After a first evaluation of the signal robustness using additional and independent non‐compliant samples, 17 steroid‐like metabolites were pointed out as relevant candidate biomarkers. All these metabolites were then monitored using a targeted GC‐MS/MS method for an additional assessment of their capacity to be used as biomarkers. Finally, two steroids, namely 5α‐androstane‐3β,17α‐diol and 5α‐androst‐2‐en‐17‐one, were concluded to be compatible with such a definition and which could be finally usable for screening purpose of AED abuse in cattle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) method was developed using the latest high-resolution LC column technology, the ultra performance liquid chromatography (UPLC), and electrospray ionization (ESI) in the positive ion mode. Gradient UPLC separation conditions were optimized for a group of 22 analytes comprising 17 glucocorticosteroids, specific designer steroids such as tetrahydrogestrinone (THG) and specific beta2-agonists such as formoterol. The UPLC/TOFMS separation obtained required 5.5 min only for all the substances tested. Even the critical pair of dexamethasone and betamethasone isomers was almost completely resolved. Thanks to the over 10,000 full-width at half maximum (FWHM) mass resolution and high mass accuracy features of TOFMS 50 mDa window accurate mass chromatograms could be reconstructed for the individual analytes. Sensitive screening in human and calf urine samples fortified at the glucocorticosteroids minimum required performance limit (MRPL) of 30 microg L(-1) (human urine, sports doping) and 2 microg L(-1) (calf urine, veterinary control) could be obtained. The potential of UPLC/TOFMS for confirmatory analysis was shown by determining the accurate mass of all compounds and fragment ions upon in-source collision-induced dissociation (CID) at different energies. The exact mass measurement errors for all glucocorticosteroids were found to be within 6 ppm. Considering veterinary control, limits of detection (LOD) and limits of quantification (LOQ) were determined for most of the analytes in calf urine and found to range from 0.1 to 3.3 and from 0.4 to 4.4 microg L(-1), respectively. The method can be easily extended with other banned substances of interest, as demonstrated by the addition of 21 beta2-agonists to the original analyte mixture in urine, without causing any interferences.  相似文献   

5.
Tetrahydrogestrinone: discovery, synthesis, and detection in urine   总被引:5,自引:0,他引:5  
Tetrahydrogestrinone (18a-homo-pregna-4,9,11-trien-17beta-ol-3-one or THG) was identified in the residue of a spent syringe that had allegedly contained an anabolic steroid undetectable by sport doping control urine tests. THG was synthesized by hydrogenation of gestrinone and characterized by mass spectrometry and NMR spectroscopy. We developed and evaluated sensitive and specific methods for rapid screening of urine samples by liquid chromatography/tandem mass spectrometry (LC/MS/MS) of underivatized THG (using transitions m/z 313 to 241 and 313 to 159) and gas chromatography/high-resolution mass spectrometry (GC/HRMS) analysis of the combination trimethylsilyl ether-oxime derivative of THG (using fragments m/z 240.14, 254.15, 267.16, and 294.19). A baboon administration study showed that THG is excreted in urine.  相似文献   

6.
To free analytical resources for new classes of doping substances, such as banned proteins, maximization of the number of compounds that can be determined with high sensitivity in a single run is highly urgent. This study demonstrates an application of ‘wrong‐way‐round ionization’ for the simultaneous detection of multiple classes of doping substances without the need to switch the polarity. A screening method for the detection of 137 compounds from various classes of prohibited substances (stimulants, diuretics, β2‐agonists, β‐blockers, antiestrogens, glucocorticosteroids and anabolic agents) has been developed. The method involves an enzymatic hydrolysis, liquid–liquid extraction and detection by liquid chromatography/orbitrap mass spectrometry with wrong‐way‐round ionization. Up to 64% of compounds had a 10‐fold lower limit of detection (LOD) than the minimum required performance limit. To compare the efficiency of conventional ionization relative to wrong‐way‐round ionization of doping substances in + ESI, a fortified blank urine sample at the minimum required performance limit was analyzed using two ESI approaches. All compounds were detected with markedly better S/N in a high‐pH mobile phase, with the exception of acetazolamide (minimal change in S/N, < 20%).The method was validated by spiking 10 different blank urine samples at five different concentrations. Validation parameters included the LOD, selectivity, ion suppression, extraction recovery and repeatability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The use of anabolic steroids is prohibited in sports. Effective control is done by monitoring their metabolites in urine samples collected from athletes. Ethical objections however restrict the use of designer steroids in human administration studies. To overcome these problems alternative in vitro and in vivo models were developed to identify metabolites and to assure a fast response by anti‐doping laboratories to evolutions on the steroid market. In this study human liver microsomes and an uPA+/+‐SCID chimeric mouse model were used to elucidate the metabolism of a steroid product called ‘Xtreme DMZ’. This product contains the designer steroid dimethazine (DMZ), which consists of two methasterone molecules linked by an azine group. In the performed stability study, degradation from dimethazine to methasterone was observed. By a combination of LC‐High Resolution Mass Spectrometry (HRMS) and GC‐MS(/MS) analysis methasterone and six other dimethazine metabolites (M1–M6), which are all methasterone metabolites, could be detected besides the parent compound in both models. The phase II metabolism of dimethazine was also investigated in the mouse urine samples. Only metabolites M1 and M2 were exclusively detected in the glucuro‐conjugated fraction; all other compounds were also found in the free fraction. For effective control of DMZ misuse in doping control samples, screening for methasterone and methasterone metabolites should be sufficient. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The analytical and methodological imperatives for large-scale and routine gas chromatographic-mass spectrometric screening of anabolic steroid urinary metabolites are described. Several aspects of their isolation, enzymatic hydrolysis, derivatization and metabolism in humans are discussed. Gas chromatographic-mass spectrometric data illustrating artifacts arising from enzymatic hydrolysis of 3 beta-ol-5-en steroids, and describing new metabolites of boldenone, methanedienone and stanozolol, as well as the conversion of norethisterone into 19-nortestosterone metabolites through de-ethylation at C-17, are presented. The analytical approach developed for gas chromatographic-mass spectrometric screening of anabolic steroids is based on the sequential selection-ion monitoring of specific and discrete ion groups characteristic to the steroids of interest under high-resolution chromatographic conditions. The major analytical and methodological requirements necessary to provide irrefutable evidence, in the case where the presence of a synthetic anabolic steroid or a testosterone to epitestosterone ratio higher than 6:1 is suspected in a given urine specimen, are also discussed.  相似文献   

9.
A fast liquid chromatographic/mass spectrometric (LC/MS/MS) screening method for the detection, in urine, of synthetic glucocorticoids, stimulants (formoterol, modafinil and mesocarb), anti-oestrogens (finasteride, exemestane, anastrozole, letrozole and formestane) and synthetic anabolic steroids (stanozolol, gestrinone and tetrahydrogestrinone) is described. All these drugs (and/or their urinary metabolites) can be simultaneously extracted by a single liquid/liquid extraction step, at alkaline pH, after enzymatic hydrolysis with beta-glucuronidase, and assayed in 7 min by LC/MS/MS using electrospray ionization in positive ion mode and multiple reaction monitoring as the acquisition mode. All compounds show good reproducibility of both the retention times (CV% <2%) and the relative abundances (CV% <10%). The limits of detection for the anti-oestrogens, glucocorticoids and steroids are in the range of 1-30 ng/mL, and for the stimulants are in the range of 100-200 ng/mL, thus satisfying the minimum required performance limits of the World Anti-Doping Agency.  相似文献   

10.
3‐Bromomethcathinone (3‐BMC) and 3‐Fluoromethcathinone (3‐FMC) are two new designer drugs, which were seized in Israel during 2009 and had also appeared on the illicit drug market in Germany. These two compounds were sold via the Internet as so‐called “bath salts” or “plant feeders.” The aim of the present study was to identify for the first time the 3‐BMC and 3‐FMC Phase I and II metabolites in rat urine and human liver microsomes using GC–MS and LC–high‐resolution MS (HR‐MS) and to test for their detectability by established urine screening approaches using GC–MS or LC–MS. Furthermore, the human cytochrome‐P450 (CYP) isoenzymes responsible for the main metabolic steps were studied to highlight possible risks of consumption due to drug–drug interaction or genetic variations. For the first aim, rat urine samples were extracted after and without enzymatic cleavage of conjugates. The metabolites were separated and identified by GC–MS and by LC–HR‐MS. The main metabolic steps were N‐demethylation, reduction of the keto group to the corresponding alcohol, hydroxylation of the aromatic system and combinations of these steps. The elemental composition of the metabolites identified by GC–MS could be confirmed by LC–HR‐MS. Furthermore, corresponding Phase II metabolites were identified using the LC–HR‐MS approach. For both compounds, detection in rat urine was possible within the authors' systematic toxicological analysis using both GC–MS and LC–MSn after a suspected recreational users dose. Following CYP enzyme kinetic studies, CYP2B6 was the most relevant enzyme for both the N‐demethylation of 3‐BMC and 3‐FMC after in vitro–in vivo extrapolation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A new combined doping control screening method for the analysis of anabolic steroids in human urine using liquid chromatography/electrospray ionization orthogonal acceleration time-of-flight mass spectrometry (LCoaTOFMS) and gas chromatography/electron ionization orthogonal acceleration time-of-flight mass spectrometry (GCoaTOFMS) has been developed in order to acquire accurate full scan MS data to be used to detect designer steroids. The developed method allowed the detection of representative prohibited substances, in addition to steroids, at concentrations of 10 ng/mL for anabolic agents and metabolites, 30 ng/mL for corticosteroids, 500 ng/mL for stimulants and beta-blockers, 250 ng/mL for diuretics, and 200 ng/mL for narcotics. Sample preparation was based on liquid-liquid extraction of hydrolyzed human urine, and the final extract was analyzed as trimethylsilylated derivatives in GCoaTOFMS and underivatized in LCoaTOFMS in positive ion mode. The sensitivity, mass accuracy, advantages and limitations of the developed method are presented.  相似文献   

12.
The administration of anabolic steroids is one of the most important issues in doping control and is detectable through a change in the carbon isotopic composition of testosterone and/or its metabolites. Gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS), however, remains a very laborious and expensive technique and substantial amounts of urine are needed to meet the sensitivity requirements of the IRMS. This can be problematic because only a limited amount of urine is available for anti‐doping analysis on a broad spectrum of substances. In this work we introduce a new type of injection that increases the sensitivity of GC‐C‐IRMS by a factor of 13 and reduces the limit of detection, simply by using solvent vent injections instead of splitless injection. This drastically reduces the amount of urine required. On top of that, by only changing the injection technique, the detection parameters of the IRMS are not affected and there is no loss in linearity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Anabolic steroids are banned in food producing livestock in Europe. Efficient methods based on mass spectrometry detection have been developed to ensure the control of such veterinary drug residues. Nevertheless, the use of "cocktails" composed of mixtures of low amounts of several substances as well as the synthesis of new compounds of unknown structure prevent efficient prevention. New analytical tools able to detect such abuse are today mandatory. In this context, metabolomics may represent new emerging strategies for investigating the global physiological effects associated to a family of substances and therefore, to suspect the administration of steroids. The purpose of the present study was to set up, assess and compare two complementary mass spectrometry-based metabolomic strategies as new tools to screen for steroid abuse in cattle and demonstrate the feasibility of such approaches. The protocols were developed in two European laboratories in charge of residues analysis in the field of food safety. Apart from sample preparation, the global process was different in both laboratories from LC-HRMS fingerprinting to multivariate data analysis through data processing and involved both LC-Orbitrap-XCMS and UPLC-ToF-MS-MetAlign strategies. The reproducibility of both sample preparation and MS measurements were assessed in order to guarantee that any differences in the acquired fingerprints were not caused by analytical variability but reflect metabolome modifications upon steroids administration. The protocols were then applied to urine samples collected on a large group of animals consisting of 12 control calves and 12 calves administrated with a mixture of 17β-estradiol 3-benzoate and 17β-nandrolone laureate esters according to a protocol reflecting likely illegal practices. The modifications in urine profiles as indicators of steroid administration have been evaluated in this context and proved the suitability of the approach for discriminating anabolic treated animals from control ones. Such an approach may therefore open a new way for the screening of anabolic steroid administration through targeted monitoring of relevant biomarkers highlighted as a result of the metabolomics study.  相似文献   

14.
Anabolic steroids are structurally similar compounds, and their product-ion spectra obtained by tandem mass spectrometry under electrospray ionization conditions are quite difficult to interpret because of poly-ring structures and lack of a charge-retaining center in their chemical structures. In the present study, the fragmentation of nine anabolic steroids of interest to the racing industry was investigated by using triple quadrupole mass spectrometer, Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, and a linear ion trap instrument. With the aid of an expert system software (Mass Frontier version 3.0), accurate mass measurements, and multiple stage tandem mass spectrometric (MS(n)) experiments, fragmentation pathways were elucidated for boldenone, methandrostenolone, tetrahydrogestrinone (THG), trenbolone, normethandrolone and mibolerone. Small differences in the chemical structures of the steroids, such as an additional double-bond or a methyl group, result in significantly different fragmentation pathways. The fragmentation pathways proposed in this paper allow interpretation of major product ions of other anabolic steroids reported by other researchers in a recent publication. The proposed fragmentation pathways are helpful for characterization of new steroids. The approach used in this study for elucidation of the fragmentation pathways is helpful in interpretation of complicated product-ion spectra of other compounds, drugs and their metabolites.  相似文献   

15.
Xiao‐Qing‐Long‐Tang is a traditional Chinese formula used for the treatment of cold syndrome, bronchitis, and nasal allergies for thousands of years. However, the in vivo integrated metabolism of its multiple components and the active chemical constituents of Xiao‐Qing‐Long‐Tang remain unknown. In this study, a method using ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry was established for the detection and identification of the metabolites in human and rat urine after oral administration of Xiao‐Qing‐Long‐Tang. A total of 19 compounds were detected or tentatively identified in human urine samples, including eight prototypes and 11 metabolites. Also, a total of 50 compounds were detected or tentatively identified in rat urine samples, including 15 prototypes and 35 metabolites detected with either a highly sensitive extracted ion chromatogram method or the MSE determination using Mass Fragment software. Our results indicated that phase Ⅱ reactions (e.g. glucuronidation and sulfation) were the main metabolic pathways of flavones, while phase I reactions (e.g. demethylation and hydroxylation) were the major metabolic reaction for alkaloids, lignans, and ginger essential oil. This investigation provided important structural information on the metabolism of Xiao‐Qing‐Long‐Tang and provided evidence to obtain a more comprehensive metabolic profile.  相似文献   

16.
Identification of anabolic androgenic steroids (AAS) is a vital issue in doping control and toxicology, and searching for metabolites with longer detection times remains an important task. Recently, a gas chromatography chemical ionization triple quadrupole mass spectrometry (GC‐CI‐MS/MS) method was introduced, and CI, in comparison with electron ionization (EI), proved to be capable of increasing the sensitivity significantly. In addition, correlations between AAS structure and fragmentation behavior could be revealed. This enables the search for previously unknown but expected metabolites by selection of their predicted transitions. The combination of both factors allows the setup of an efficient approach to search for new metabolites. The approach uses selected reaction monitoring which is inherently more sensitive than full scan or precursor ion scan. Additionally, structural information obtained from the structure specific CI fragmentation pattern facilitates metabolite identification. The procedure was demonstrated by a methandienone case study. Its metabolites have been studied extensively in the past, and this allowed an adequate evaluation of the efficiency of the approach. Thirty three metabolites were detected, including all relevant previously discovered metabolites. In our study, the previously reported long‐term metabolite (18‐nor‐17β‐hydroxymethyl,17α‐methyl‐androst‐1,4,13‐trien‐3‐one) could be detected up to 26 days by using GC‐CI‐MS/MS. The study proves the validity of the approach to search for metabolites of new synthetic AAS and new long‐term metabolites of less studied AAS and illustrates the increase in sensitivity by using CI. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Doping control in sport is mandatory to detect and to control the use of prohibited substances. Due to the growing number of targets, the analysis of doping compounds and their metabolites is carried out using established screening methods. However, detection of anabolic steroids with 4,9,11-triene structure in urine is problematic, so it is necessary to improve the methods.We review the state of the art in doping-control analysis of 4,9,11-trien-3-one steroids, providing an overview of the screening and confirmatory methods developed for these analytes in human urine. First, we review chromatographic techniques. We discuss difficulties in the derivatization of those compounds prior to gas chromatography analyses. In recent years, liquid chromatography has been the preferred technique in drug testing in sport, due to the reduced sample pre-treatment, improved limits of detection and comprehensiveness. We also report on advances and limitations of immunochemical techniques for the analysis of this group of substances.  相似文献   

18.
The aim of the work was to develop a flexible in vitro synthesis procedure, which can be applied in order to study and predict the metabolic patterns of new derivatives of anabolic androgenic steroids (AAS) with respect to most prominent target compounds for doping control purposes. Microsomal and S9 fraction of human liver preparations were used as a source of metabolising enzymes and the co-substrates of the synthesis mixture were selected to favour phase-I metabolic reactions and glucuronidation as phase-II conjugation reactions. Model compounds within the study were 4,9,11-trien-3-one steroids, structural derivatives of gestrinone and trenbolone, which both are included in the list of prohibited compounds in sports by the World Anti-Doping Agency (WADA). The correlation between in vitro metabolism of human microsomes and in vivo excretion studies in human was compared with gestrinone and subsequently, the applicability of the in vitro model for prediction of AAS metabolic pathways for new doping agents was evaluated. All the AAS examined within this study were successfully metabolised using the developed in vitro model, hydroxylation, reduction and glucuronide conjugation being the most prominent reaction pathways. Hydroxylated and glucuronide-conjugated metabolites of in vivo experiment with gestrinone were the same metabolites formed in the enzyme-driven process, thus showing good in vitro-in vivo correlation. Liquid chromatographic-mass spectrometric and tandem mass spectrometric methods were developed, relying on the positive polarity of electrospray ionisation, which also allowed the direct detection of intact glucuronide-conjugated AAS metabolites. Due to charge delocalisation and high proton affinity, the developed method was proven effective in the analysis of AAS metabolites bearing extensive conjugated double bond systems in their structures.  相似文献   

19.
Huo Luo Xiao Ling Dan (HLXLD), a Chinese herbal formula, is used in folk medicine for the treatment of arthritis and other chronic inflammatory diseases. However, the in vivo integrated metabolism of its multiple components remains unknown. In this paper, an ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry (UPLC‐Q‐TOF‐MS) method was developed for detection and identification of HLXLD metabolites in rat urine at high and normal clinical dosages. The prototype constituents and their metabolites in urine were analyzed. The mass measurements were accurate within 8 ppm, and subsequent fragment ions offered higher quality structural information for interpretation of the fragmentation pathways of various compounds. A total of 85 compounds were detected in high dosages urine samples by a highly sensitive extracted ion chromatograms method, including 31 parent compounds and 54 metabolites. Our results indicated that phase 2 reactions (e.g. glucuronidation, glutathionidation and sulfation) were the main metabolic pathways of lactones, alkaloids and flavones, while phase I reactions (e.g. hydrogenation and hydroxylation) were the major metabolic reaction for coumarins, paeoniflorin and iridoids. This investigation provided important structural information on the metabolism of HLXLD and provided scientific evidence to obtain a more comprehensive metabolic profile. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
秦旸  刘欣  王占良  吴侔天 《色谱》2008,26(4):465-468
研究建立了合成类固醇药物群勃龙、四氢孕三烯炔酮和孕三烯酮的液相色谱-电喷雾质谱的检测方法。尿样经过β-葡萄糖醛酸酶酶解和叔丁基甲醚提取后,采用Zorbax SB-C18分析柱(150 mm×2.1 mm,5 μm),在流动相为pH 3.5的甲酸铵缓冲液-乙腈的条件下进行梯度洗脱,在正离子模式下检测。考察了不同的质谱条件对这类化合物检测结果的影响。建立了人尿液中合成类固醇药物的液相色谱-电喷雾电离质谱的初筛和确证方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号