首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Polyvinyl formal (PVFM)‐based dense polymer membranes with nano‐Al2O3 doping are prepared via phase inversion method. The membranes and also their performances as gel polymer electrolytes (GPEs) for lithium ion battery are studied by field emission scanning electron microscope, X‐ray diffraction, differential scanning calorimetry, mechanical strength test, electrolyte uptake test, electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge test. The polymer membrane with 3 wt % nano‐Al2O3 doping shows the improved mechanical strength of 12.16 MPa and electrolyte uptake of 431.25% compared with 10.47 MPa and 310.59% of the undoped sample, respectively. The membrane absorbs and swells liquid electrolyte to form stable GPE with ionic conductivity of 4.92 × 10?4 S cm?1 at room temperature, which is higher than 1.77 × 10?4 S cm?1 of GPE from the undoped membrane. Moreover, the Al2O3‐modified membrane supporting GPE exhibits wide electrochemical stability window of 1.2–4.8 V (vs. Li/Li+) and good compatibility with LiFePO4 electrode, which implies Al2O3‐modified PVFM‐based GPE to be a promising candidate for lithium ion batteries. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 572–577  相似文献   

2.
Highly conducting polypyrrole (PPY) films, doped with various anions [pTS?, ClO4?, and NO3? and mixed electrolyte system (pTS? + ClO4?)], have been electrochemically synthesized in aqueous solution at ~275 K in an inert atmosphere. PPY exhibits metallic order dc conductivity at room temperature and shows variation of conductivity with respect to time of polymerization. Effect of dopant anion on growth mechanism of PPY is evident from its surface morphology. X‐ray photoelectron spectroscopy (XPS), used to examine the surface composition and doping level of various PPY films, confirms the anionic doping into the polymer backbone. Both XPS and ultraviolet–visible spectroscopy give evidence of formation of polarons and bipolarons. The temperature (4.2–320 K)‐dependent dc conductivity data of these PPY films have been explained by Mott's 3D variable‐range hopping conduction model. Mott's parameters have been estimated, and structural disorder with doping is correlated for all the samples. Mott's criterion for distant hopping sites prevails in case of moderately doped samples (PPY3, PPY4, and PPY5), whereas the hopping to nearest neighbor sites is found more suitable in case of highly doped samples (PPY1 and PPY2). The origin of these changes is due to the modification in the molecular structure of PPY, which is governed by different growth mechanisms for organic (pTS?) and inorganic (ClO4? and NO3?) counter anions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

3.
Details on the structure and transport characteristics of the solid polymer electrolyte polyethylene oxide (PEO)/lithium salt (LiClO4) modified by novolac phenolic resin are presented here. From IR spectra it could be concluded that complex formation occurred through multiple interactions between the ether oxygen of PEO–lithium, phenolic lithium, and the phenolic ether oxygen of PEO. The free hydroxyl band in phenolic reflected that phenolic closely interacted with both the PEO polymer and ionic salt. With increasing salt content in PEO, the vibration band corresponding to the ClO anion (~623 cm?1) displayed growth of a shoulder at ~635 cm?1, suggesting the formation of Li+…ClO4? ion pairing. However, in the presence of phenolic, ion‐pairing formation was effectively suppressed, which suggested that the phenolic moiety facilitated a greater degree of LiClO4 salt dissociation. Activation energy analysis revealed two conducting pathways: one through the amorphous PEO and the other through the PEO/phenolic amorphous matrix. The high ion conductivity originated from effective salt dissociation and the establishment of a new conduction network formed by PEO and phenolic. Furthermore, the structural modification also extended the thermal stability and mechanical strength of the solid polymer electrolyte composite. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3866–3875, 2004  相似文献   

4.
Poly(acetyl ethylene oxide acrylate‐co‐vinyl acetate) (P(AEOA‐VAc)) was synthesized and used as a host for lithium perchlorate to prepare an all solid polymer electrolyte. Introduction of carbonyl groups into the copolymer increased ionic conductivity. All solid polymer electrolytes based on P(AEOA‐VAc) at 14.3 wt% VAc with 12wt% LiClO4 showed conductivity as high as 1.2 × 10?4 S cm?1 at room temperature. The temperature dependence of the ionic conductivity followed the VTF behavior, indicating that the ion transport was related to segmental movement of the polymer. FTIR was used to investigate the effect of the carbonyl group on ionic conductivity. The interaction between the lithium salt and carbonyl groups accelerated the dissociation of the lithium salt and thus resulted in a maximum ionic conductivity at a salt concentration higher than pure PAEO‐salts system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The modification of electrodeposited polyaniline film by subsequent electrodeposition of 4,4′‐diaminodiphenyl sulfone (DDS) leads to a new material having nanostructure. The coated polymer films were treated with various pH solutions. The film adherent characteristics and surface morphology were studied using SEM. The electrochemically synthesized polyDDS revealed good redox behavior. The DDS was also polymerized by the chemical oxidation method using potassium persulphate. The polymer was characterized by UV‐Vis and FTIR spectral studies. The formation of polymer through the N? H group was understood from the single N? H stretching vibrational frequency at 3459 cm?1. The X‐ray diffraction studies revealed the formation of nano sized (28 nm) crystalline polymer. The conductivity of the polymer was determined to be 1.07 × 10?4 S.cm?1. The solubility of the chemically polymerized powder was ascertained, and polyDDS showed good solubility in DMF and DMSO. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1702–1707, 2005  相似文献   

6.
Silver polymer electrolytes were prepared by blending silver salt with poly(oxyethylene)9 methacrylate)‐graft‐poly(dimethyl siloxane), POEM‐g‐PDMS, confining silver salts within the continuous ion‐conducting POEM domains of microphase‐separated graft copolymer. AgClO4 polymer electrolytes exhibited their maximum conductivity at high silver concentrations as well as higher ionic conductivities than AgCF3SO3 electrolytes. The difference in conductivities of the two electrolytes was investigated in terms of the differences in the interactions of silver ions with ether oxygen of POEM and, hence, with the anions of salts. Upon the addition of salt in graft copolymer, the increase of Tg in AgClO4 was higher than that in AgCF3SO3 electrolytes. Analysis of an extended configuration entropy model revealed that the interaction of ether oxygen/AgClO4 was stronger than that of ether oxygen/AgCF3SO3 whereas the interaction of Ag+/ClO4? was weaker than that of Ag+/CF3SO3?. These interactions are supported by the anion vibration mode of FT‐Raman spectroscopy. It is thus concluded that the higher ionic conductivity of AgClO4 electrolytes was mostly because of higher concentrations of free ions, resulting from their strong ether oxygen/silver ion and weak silver ion/anion interactions. A small angle X‐ray scattering study also showed that the connectivity of the POEM phase was well developed to form nanophase morphology and the domain periodicities of graft copolymer electrolytes monotonically increased with the increase of silver concentration up to critical concentrations, after which the connectivity was less developed and the domain spacings remained invariant. This is attributed to the fact that silver salts are spatially and selectively incorporated in conducting POEM domains as free ions up to critical concentrations, after which they are distributed in both domains as ion pairs without selectivity. The increase of domain d‐spacing in AgClO4 electrolytes was larger than that in AgCF3SO3, which again results from high concentrations of free ions in the former. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1018–1025, 2007  相似文献   

7.
In the present work, a novel polymer electrolyte based on poly(methyl methacrylate) (PMMA)/layered lithium trivanadate (LiV3O8) nanocomposite has been investigated. X-ray diffraction (XRD) study shows that d-spacing is increased from 6.3?±?0.1 Å to 12.8?±?0.1 Å upon intercalation of the polymer into the layered LiV3O8. Room temperature ionic conductivity of the obtained nanocomposite gel polymer electrolyte is found to be superior to that of conventional PMMA-based gel polymer electrolyte. Enhancement in ionic conductivity of the nanocomposite gel electrolyte is attributed to the formation of a two-dimensional channel as a result of decreased interaction between Li+ and V3O 8 ? layers as confirmed by FTIR. SEM results show aggregation of nanocomposite particles resulting from extension of some of the polymer chains from interlayer to the edge providing paths for Li+ ion transport. Interfacial stability of nanocomposite gel electrolyte is also found to be better than that of the conventional PMMA-based gel polymer electrolyte.  相似文献   

8.
A proton-conducting nanocomposite gel polymer electrolyte (GPE) system, [35{(25 poly(methylmethacrylate) (PMMA) + 75 poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP))?+?xSiO2}?+?65{1 M NH4SCN in ethylene carbonate (EC) + propylene carbonate (PC)}], where x?=?0, 1, 2, 4, 6, 8, 10, and 12, has been reported. The free standing films of the gel electrolyte are obtained by solution cast technique. Films exhibit an amorphous and porous structure as observed from X-ray diffractometry (XRD) and scanning electron microscopy (SEM) studies. Fourier transform infrared spectrophotometry (FTIR) studies indicate ion–filler–polymer interactions in the nanocomposite blend GPE. The room temperature ionic conductivity of the gel electrolyte has been measured with different silica concentrations. The maximum ionic conductivity at room temperature has been observed as 4.3?×?10?3?S?cm?1 with 2 wt.% of SiO2 dispersion. The temperature dependence of ionic conductivity shows a typical Vogel-Tamman-Fulcher (VTF) behavior. The electrochemical potential window of the nanocomposite GPE film has been observed between ?1.6 V and 1.6 V. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO4·7H2O anode and PbO2/V2O5 cathode. The open circuit voltage (OCV) of the battery has been obtained as 1.55 V. The highest energy density of the cell has been obtained as 6.11 Wh?kg?1 for low current drain. The battery shows rechargeability up to 3 cycles and thereafter, its discharge capacity fades away substantially.  相似文献   

9.
Polyurea, which was synthesized from 4,4′‐diphenylmethane diisocyanate, Jeffamine‐ED2001 (weight‐average molecular weight: 2000), and 3,5‐diaminobanzoic acid (DABA) were doped with lithium perchlorate (LiClO4) as the polyelectrolyte. Differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and 7Li magic‐angle spinning (MAS) solid‐state NMR were used to monitor changes in the morphology of polyurea electrolytes corresponding to the concentration of LiClO4 dopants. DSC showed the glass‐transition temperature of the hard and soft segments increases with salt concentration. FTIR indicated the carboxylic group of DABA coordinates with the Li+ ion, and the ordered hydrogen‐bonded urea carbonyl groups are destroyed when the salt concentration exceeds 0.5 mmole of LiClO4 (gPUrea)?1. The 7Li MAS solid‐state NMR investigation of the polyurea electrolytes revealed the presence of two Li+ environments at lower temperature. Impedance spectroscopy measurements showed that the conductivity behavior followed the Arrhenius equation, and the maximum conductivity occurred when the crystalline structure of polyurea was disrupted. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 4007–4016, 2003  相似文献   

10.
Conducting polypyrrole (PPy) films doped with p‐toluene solfonate (pTS?), perchlorate (ClO4?) and polyphosphate (PP?) were electrochemically synthesized on the stainless steel SS‐304 and the Indium Tin Oxide (ITO) glass substrates successfully. The conducting polymer composite films were studied by Fourier transform infrared spectra, integrated thermal analysis system and scanning electron microscopy, respectively. Four‐point probe measurements and in situ nanotribolab system equipped with a nanoscale electrical contact resistance package were employed to analyze their electrical and mechanical properties. Results indicate that the film doped with PP? ion showed the best thermal stability. For the ClO4? ion doped films, the glass transition occurred at 274.8 °C. The pTS? ion doped film on the SS‐304 steel had a good conductivity, and there was a voltage barrier that ranged from ?1.25 to 1.9 V according to the current–voltage curves. Nanoindentation tests show that the mechanical properties of the PPy/pTS? film and the PPy/PP? film were better than that of PPy/ClO4? films. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Proton transfer reactions under anhydrous conditions have attracted remarkable interest due to chemical energy conversions in polymer electrolyte membrane fuel cells. In this work, 1H‐1,2,4‐triazole (Tri) was used as a proton solvent in different polymer host matrices such as Poly(vinylphosphonic acid) (PVPA), and poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) (PAMPS). PVPATrix and PAMPSTrix electrolytes were investigated where x is the molar ratio of Tri to corresponding polymer repeat unit. The interaction between polymer and Tri was studied via FTIR spectroscopy. Thermogravimetry analysis and differential scanning calorimetry were employed to examine the thermal stability and homogeneity of the materials, respectively. PVPATri1.5 showed a maximum water‐free proton conductivity of 2.3 × 10?3 S/cm at 120 °C and that of PAMPSTri2 was 9.3 × 10?4 S/cm at 140 °C. The results were interpreted in terms of different acidic functional groups and composition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3315–3322, 2006  相似文献   

12.
A series of polymer electrolytes based on multiarm polymers and lithium salt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and impedance measurement. The relationships of conductivity with salt concentration, temperature, and arm numbers are discussed. It is suggested that the star polymer has a higher solvency and ion transfer ability on lithium salts than on linear polymers. The conductivity maximum appeared at a higher salt concentration ([EO]/[Li] = 4). Impedance measurement suggested that the optimum conductivity was 2 × 10?4 s · cm?1. The conductivity increased with temperature and the dependence of ionic conductivity on temperature fits the Arrhenius equation. Among the studied systems, the star polymer with a five arm number performs better than other structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4195–4198, 2004  相似文献   

13.
A nanocomposite polymer electrolyte consisting of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) as a polymer matrix, lithium tetrafluoroborate (LiBF4) as a dopant salt, and titanium dioxide (TiO2) as an inert ceramic filler was prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by a sol?Cgel process. The ionic conductivity was investigated by alternating current impedance spectroscopy. X-ray diffraction (XRD) was used to determine the structure of the electrolyte, and its morphology was examined by scanning electron microscopy (SEM). The highest conductivity, 1.4?×?10?5 S cm?1 was obtained at 30 wt.% of LiBF4 salt addition with 6 wt.% of TiO2 filler content. Ionic conductivity was found to increase with the increase of salt concentration. The optimum value of conductivity was found at 6 wt.% of TiO2. The XRD analysis revealed that the crystalline phase of the polymer host slightly decreased with the addition of salt and filler. The SEM analysis showed that the smoother the surface of the electrolyte, the higher its conductivity.  相似文献   

14.
A single probe of an Au nanocluster–CdTe quantum dots nanocomposite has been developed by using tripeptide‐capped CdTe quantum dots (QD) and bovine serum albumin (BSA) protein‐conjugated Au25 nanocluster (NC) for detection of both Hg2+ ion and F? ion. The formation of Au‐NC–CdTe QD nanocomposite has been confirmed by TEM, steady state and time resolved spectroscopy, CD and FTIR studies. A significant signal off (74 % PL quenching at 553 nm) phenomenon of this nanocomposite is observed in presence of 6.56×10?7 M Hg2+ ion, due to salt‐induced aggregation. However, a dramatic PL enhancement (128 %) of the Au‐NC–CdTe QD nanocomposite is observed in presence of 8.47×10?7 M F? anion. The calculated limit of detections (LOD) of Hg2+ ion concentration and F? ion concentration are found to be 9 and 117 nM , respectively, which are within the safety range set by the United States Environment Protection Agency. Thus, the simple Au‐NC–CdTe QD optical‐based sensor is very useful to detect both toxic cations and anions.  相似文献   

15.
A new combination of ionically conducting polymer–clay nanocomposites based on (PAN)8LiClO4 + x wt % montmorillonite (unmodified) clay has been prepared using the standard solution cast process. X-Ray diffraction (XRD) analysis reveals strong interaction of polymer salt complex (PS) with the montmorillonite matrix evidenced by changes in d001 spacing of the clay and enhancement in the clay gallery width on composite formation possibly due to intercalation of polymer–salt complex into nanometric clay galleries. Evidences of such an interaction among polymer–ion–clay components of the composite matrix has also been observed in the Fourier transform infrared (FTIR) spectrum results. FTIR results clearly indicated cation (Li+) coordination at nitrile (CN) site of the polymer backbone along with appearance of a shoulder suggesting strong evidence of polymer–ion interaction. Addition of clay into the PS matrix has been observed to affect ion–ion interaction resulting from ion dissociation effect at low clay loading in the PNC films. Complex impedance spectroscopy (CIS) analysis has provided a response comprising of a semicircular arc followed by a spike attributed respectively, to the bulk conduction and electrode polarization at the interfaces. Electrical transport appears to be predominantly ionic (tion = 0.99) with significant improvement in the electrical conductivity and thermal stability properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2577–2592, 2008  相似文献   

16.
High‐efficiency, mild‐conditioned tandem Knoevenagel–Michael reaction was utilized to post‐modify aldehyde‐containing, triphenylamine‐based precursor conjugated polymer ( CP1 ) to afford dimedone‐decorated aimed polymer ( CP2) . The chemical structure of CP2 was verified by FTIR and 1H NMR analyses. With the introduction of aqueous Hg2+, fluorescence of CP2 in THF‐water mixture (V THF/V water = 1/100) (buffered with 5 mM sodium dihydrogen phosphate‐disodium hydrogen phosphate (PB), pH = 7.4) altered significantly, with the emission changed from blue to orange. Besides this, CP2 also displayed specific optical response to ClO? in another probing medium (V THF/V water = 1/100, buffered with 50 mM PBS (with NaCl in PB, pH = 7.4). The detailed probing process and the plausible detection mechanism of CP2 to Hg2+ and ClO? were systematically investigated here. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1067–1076  相似文献   

17.
An amphiphilic comb‐like copolymer consisting of a poly(vinyl chloride) (PVC) backbone and poly((oxyethylene)9 methacrylate) (POEM) side chains, PVC‐graft‐POEM was synthesized via atom transfer radical polymerization. This comb copolymer was complexed with LiCF3SO3 to form a solid polymer electrolyte. FTIR and FT‐Raman spectroscopy indicate that lithium salts are dissolved in the ion conducting POEM domains of microphase‐separated graft copolymer up to 10 wt % of salt concentration. Microphase‐separated structure of the materials and the selective interaction of lithium ions with POEM domains were revealed by transmission electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry. The maximum ionic conductivity of 4.4 × 10?5 S/cm at room temperature was achieved at 10 wt % of salt concentration, above which salts are present as less mobile species such as ion pairs and higher order ionic aggregates, as characterized by FT‐Raman spectroscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1443–1451, 2009  相似文献   

18.
Methacrylic acid (MAA) was used as in situ surface modifier to improve the interface interaction between nano‐CaCO3 particle and ethylene–propylene–diene monomer (EPDM) matrix, and hence the mechanical properties of nano‐CaCO3‐filled EPDM vulcanizates. The results showed that the incorporation of MAA improved the filler–matrix interaction, which was proved by Fourier transformation infrared spectrometer (FTIR), Kraus equation, crosslink density determination, and scanning electron microscope (SEM). The formation of carboxylate and the participation of MAA in the crosslinking of EPDM indicated the strong filler–matrix interaction from the aspect of chemical reaction. The results of Kraus equation showed that the presence of MAA enhanced the reinforcement extent of nano‐CaCO3 on EPDM vulcanizates. Crosslink density determination proved the formation of the ionic crosslinks in EPDM vulcanizates with the existence of MAA. The filler particles on tensile fracture were embedded in the matrix and could not be observed obviously, indicating that a strong interfacial interaction between the filler and the matrix had been achieved with the incorporation of MAA. Meanwhile, the presence of MAA remarkably increased the modulus and tensile strength of the vulcanizates, without negative effect on the high elongation at break. Furthermore, the ionic bond was thought to be formed only on filler surface because of the absolute deficiency of MAA, which resulted in the possible structure where filler particles were considered as crosslink points. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1226–1236, 2006  相似文献   

19.
Solid‐state electrolytes have emerged as a promising alternative to existing liquid electrolytes for next generation Li‐ion batteries for better safety and stability. Of various types of solid electrolytes, composite polymer electrolytes exhibit acceptable Li‐ion conductivity due to the interaction between nanofillers and polymer. Nevertheless, the agglomeration of nanofillers at high concentration has been a major obstacle for improving Li‐ion conductivity. In this study, we designed a three‐dimensional (3D) nanostructured hydrogel‐derived Li0.35La0.55TiO3 (LLTO) framework, which was used as a 3D nanofiller for high‐performance composite polymer Li‐ion electrolyte. The systematic percolation study revealed that the pre‐percolating structure of LLTO framework improved Li‐ion conductivity to 8.8×10?5 S cm?1 at room temperature.  相似文献   

20.
This study demonstrates that adding clay that was organically modified by dimethyldioctadecylammonium chloride (DDAC) and d2000 surfactants increases the ionic conductivity of polymeric electrolyte. A.C. impedance, differential scanning calorimetric (DSC), and Fourier transform infrared (FTIR) studies revealed that the silicate layers strongly interact with the dopant salt lithium perchlorate (LiClO4) within a poly(ethylene oxide) (PEO)/clay/LiClO4 system. DSC characterization verified that the addition of a small amount of the organic clay reduces the glass‐transition temperature of PEO as a result of the interaction between the negative charge in the clay and the lithium cation. Additionally, the strength of such a specific interaction depends on the extent of PEO intercalation. With respect to the interaction between the silicate layer and the lithium cation, three types of complexes are assumed. In complex I, lithium cation is distributed within the PEO phase. In complex II, lithium cation resides in an PEO/exfoliated‐clay environment. In complex III, the lithium cation is located in PEO/agglomerated‐clay domains. More clay favors complex III over complexes II and I, reducing the interaction between the silicate layers and the lithium cations because of strong self‐aggregation among the silicate layers. Notably, the (PEO)8LiClO4/DDAC‐modified clay (DDAC‐mClay) composition can form a nanocomposite electrolyte with high ionic conductivity (8 × 10?5 S/cm) at room temperature. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1342–1353, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号