首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new styryl‐type monomer, 2‐(4‐vinylbenzyloxy)‐1 ‐naphthaldehyde thiosemicarbazone (VNT), was synthesized and then copolymerized with methyl methacrylate (MMA) by reversible addition fragmentation chain transfer polymerization affording a series of poly(MMA‐co‐VNT)s with different functional unit content, predetermined molecular weight, and narrow molecular‐weight distribution. The desired copolymers were structurally confirmed by various spectroscopic characterizations. Colorimetric and fluorescent titration spectra revealed that the copolymers are highly selective toward fluoride anions over other competitive species including Cl?, Br?, I?, H2PO4?, AcO?, and HSO4?. On addition of F?, a remarkable colorless‐to‐yellow color change is easily observed by naked eyes. The influence of the copolymer composition and molecular weight on its sensing capacity was then carefully investigated. The results showed that higher VNT‐incorporation amount within the copolymer chains leads to higher sensitivity toward F? ions. Interestingly, the chromogenic process of the polymeric sensor can be switched back and forth by successively adding F? and HSO4? anions into the dimethyl sulfoxide solution of the polymer, which may be represented by a complementary “IMPLICATION/INHIBIT” logic gate at molecular level using both the ions as the chemical inputs. Based on such a reversible and reproducible sensing system, we designed a molecular‐scale sequential information processing circuit displaying “writing–reading–erasing–reading” behavior and “multiwrite” function in the form of binary logic. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Three novel colorimetric and ratiometric probes (SH-1~3) for fluoride ion detection were designed and synthesized from nature small molecules. Obvious yellow-to-orange color change of these probes in the THF was achieved only in presence of F? among the eight anions (F?, Cl?, Br?, I?, H2PO4?, HSO4?, CH3COO, ClO4?), along with the emission shifting from green to orange red. These three probes are 1:1 complexed with fluoride ions, with complexation constant of around 0.1 × 104 M?1. The detection limit of probes SH-1~3 reached as low as around 1 μM. 1H NMR titration study suggested that the fluoride ion induced deprotonation of the probe through hydrogen bonding interaction between amino group of probe and fluoride ion.  相似文献   

3.
A blue fluorescent polymer based on poly(vinyl carbazole) (PVK) and terfluorene, combined to make a chemical hybrid at the carbazole unit (PVK‐TF), is fully characterized in this study. PVK‐TF shows useful emission features, such as peaks at 400, 420, 437, 460, and 496 nm, depending on the processing conditions. It possesses a relatively high triplet energy level (2.23 eV), electrochemical stability, good film‐forming ability, and morphological stability. Based on this blue fluorescent material, highly efficient orange phosphorescent polymer light‐emitting diodes (PLEDs) were fabricated with a maximum efficiency of 21.99 cd A?1, and a maximum luminance of 19552.3 cd m?2. Single‐layer hybrid white PLEDs were developed, with a high color rendering index of 81.9 that emitted across the whole visible spectrum from 380 to 780 nm, corresponding to the Commission International de L'Eclairage coordinates x, y values of around (0.38, 0.40) and CCT = 3774, with a maximum current efficiency of 10.69 cd A?1, and a maximum brightness of 15723.3 cd m?2. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 587–595  相似文献   

4.
A novel coumarin-based compound 1 featuring thiosemicarbazone as binding unit, was reported as a colorimetric and fluorescent probe for the detection of fluoride anion. The addition of F? to a solution of probe 1 in tetrahydrofuran resulted in evident naked-eye color change from green-yellow to orange-red under daylight and obvious fluorescence quenching within 3 s. And the detection limit toward F? was calculated to be as low as 2.16 × 10?7 mol/L. 1H NMR titrations proved that the interaction between 1 and fluoride ion: hydrogen bond at low fluoride ion concentration, deprotonation at high fluoride ion concentration. Besides, it exhibited highly sensitivity and selectivity for F? over other examined ions (Cl?, Br?, I?, AcO?, NO3?, HSO4?, H2PO4?) in tetrahydrofuran solution.  相似文献   

5.
Detection and the simultaneous removal of mercury ions are of vital importance. In this study, fluorescent monomers, small molecular sensors, were first synthesized using 4‐bromo‐naphthalic anhydride as precursor. These double bond bearing sensors were then grafted to polystyrene (PS) microspheres through dispersion polymerization. The sensors still retained their detecting ability when they were anchored on the surfaces of PS microspheres. Upon the addition of Hg2+ ions to the PS microspheres, both the color and the fluorescence intensity changed, which could be employed to detect Hg2+ ions. The absorption capacity of the two kinds of PS microspheres reached 0.557 mg g?1 and 0.628 mg g?1 respectively. The PS microspheres still remain their fluorescence and absorption even used for five times. These polymeric highly sensitive chemosensors may see their applications in purification of polluted environments. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4592–4600  相似文献   

6.
Novel chemosensors based on 2-(2′-hydroxyphenyl)-4-phenylthiazole were synthesized and their anion sensing behaviors were investigated. Sensors 1 and 2 show fluoride ion selective behaviors related to their absorption and emission spectra amongst F?, CH3CO2 ?, H2PO4 ?, Cl?, Br?, I?, ClO4 ?, NO3 ?, and HSO4 ? anions. Sensor 2 shows color change upon interaction with F?. Interactions of 1, 2 and 3 with F? cause a red-shift in UV–vis absorption and a large Stokes shift in fluorescence emission due to the inhibition of ESIPT induced by the deprotonation of phenolic proton by F?.  相似文献   

7.
Facile prepolymerization and postpolymerization functionalization approaches to prepare well‐defined fluorescent conjugated glycopolymers through Cu(I)‐catalyzed azide/alkyne “Click” ligation were explored. Two well‐defined carbazole‐based fluorescent conjugated glycopolymers were readily synthesized based on these strategies and characterized by 1H NMR, 13C NMR, IR spectra, and UV‐vis spectra. The “Click” ligation offers a very effective conjugation method to covalently attach carbohydrate residues to fluorescent conjugated polymers. In addition, the studies of carbohydrate–lectin interactions were performed by titration of concanavalin A (Con A) to D ‐glucose‐bearing poly(anthracene‐alt‐carbazole) copolymer P‐2 resulting in significant fluorescence quenching of the polymer due to carbohydrate–lectin interactions. When peanut agglutinin (PNA) was added, no distinct change in the fluorescent properties of P‐2 was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2948–2957, 2009  相似文献   

8.
A novel combination of dispersed phase polymer nanocomposite electrolyte based on PEO8‐LiClO4+ x wt % nano‐CeO2 has been investigated. A model for ion transport mechanism has been proposed to account for substantial enhancement of its electrical conductivity by ~ 2 orders of magnitude at low volume fraction of the filler reinforcement in the polymer nanocomposite films. The strength of the proposed model is based on unambiguous evidences from FTIR, TEM, and conductivity analysis. The FTIR results provide clear role of nanofiller concentration on ion–ion interaction quantified in terms of the fraction of free anion and ion‐pairs present in the nanocomposite films and its excellent correlation with conductivity versus filler concentration. The presence of asymmetry in the ν4(ClO4?) band observed at 625 cm?1 is attributed to its resolved degeneracy suggesting the presence of both uncoordinated and cation‐coordinated ClO4? anion in the matrix due to ion–ion and ion–filler interactions assisted by Lewis acid–base interaction. The enhancement in conductivity at low concentration is possibly due to direct interaction of nano‐CeO2 with both polymer host and anions resulting in the release of ionic charges. Drastic conductivity reduction at higher concentration is related to charge immobilization because of ion/ion‐pair entrapment by local clusters of filler as evidenced in TEM. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 60–71, 2009  相似文献   

9.
A fluorescent hyperbranched copolymer (HTP) and a linear copolymer (PTP) as a reference sample to HTP both containing triphenylamine and divinyl bipyridyl units were synthesized via Heck coupling reaction from 5,5′‐Divinyl‐2,2′‐bipyridyl with tris(4‐bromophenyl)amine and with 4,4′‐dibromotriphenylamie, respectively. The chemical structure of HTP was confirmed by FTIR, 1H NMR, and 13C NMR. The polymer HTP had a number‐average molecular weight of 1895 and a weight‐average molecular weight of 2315, and good solubility in conventional organic solvents, such as THF, DMF, and chloroform, and exhibited good thermal stability. The UV–vis absorption and photoluminescence (PL) spectra exhibited absorption maximum at 428 nm and emissive maximum at 531 nm for the HTP solution. The spectroscopic results of HTP and PTP indicated that hyperbranched conjugated structure increases the effective conjugation length, as compared with corresponding linear conjugated structure. The fluorescence of the polymer in solution can be quenched by various transition metal ions. The effect of backbone structure of the conjugated polymer‐based chemosensors on the sensitivity and selectivity in metal ions sensing have been investigated, and the quenching effect of HTP is more sensitive toward transition metal than linear copolymer PTP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 222–230, 2009  相似文献   

10.
A conjugated polymer was synthesized by the polymerization of 4,7‐dibromobenzo[2,1,3]thiadiazole ( M‐1 ) with tri{1,4‐diethynyl‐2,5‐bis(2‐(2‐methoxyethoxy)‐ethoxy)}‐benzene ( M‐2 ) via Pd‐catalyzed Sonogashira reaction. The polymer shows strong orange fluorescence. The responsive optical properties of the polymer on various metal ions were investigated through photoluminescence and UV–vis absorption measurements. The polymer displays highly sensitive and selective on‐off Hg2+ fluorescence quenching property in tetrahydrofuran solution in comparison with the other cations including Mg2+, Zn2+, Co2+, Ni2+, Cu2+, Ag+, Cd2+, and Pb2+. More importantly, the fluorescent color of the polymer sensor disappears after addition of Hg2+, which could be easily detected by naked eyes. The results indicate that this kind of polymer sensor incorporating benzo[2,1,3]thiadiazole moiety as a ligand can be used as a novel colorimetric and fluorometric sensor for Hg2+ detection. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Coumarin-based urea and urea–amide scaffolds 13 have been designed and synthesized for the selective and naked eye detection of cyanide ion. Of the three, compound 3 exhibits ratiometric fluorescence change selectively in the presence of CN? and validates the rationality in designing anion receptor. Upon interaction with CN?, the color of the solution of 3 in CH3CN under UV exposure becomes bright yellow, which is beneficial for its naked eye detection. Addition of CN? of ~10?4 M brings nice color change from colourless to yellow in ordinary light. The sensing event is supposed to be due to nucleophilic addition of CN? to the coumarin unit enabling intramolecular charge transfer (ICT) mechanism.  相似文献   

12.
A polymeric sensor (PTH) containing naphthalimide signal moiety and thiourea recognition moiety for the detection of anions was synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization, which can guarantee controllable molecular weight, narrow molecular weight distribution, and precise polymer structure. Both PTH and its corresponding monomer (TH) showed naked‐eye recognizable yellow‐to‐orange changes upon addition of fluoride (F?), acetate (AcO?), and dihydrogen phosphate (H2PO) of low concentration. However, only F? can result in orange‐to‐purple change when the aforementioned anions were added at high concentrations, which was attributed to the deprotonation of the thiourea N? H groups and the mechanism was supported by the UV‐Vis absorption spectra and 1H NMR titration. The effect of these anions on thin PTH films was also investigated, and the addition of F? led to obvious spectra change. It was found that other halide anions (Cl?, Br?, and I?) could hardly induce any variation of absorption spectra. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1551–1556, 2010  相似文献   

13.
Methoxy‐substituted poly(triphenylamine)s, poly‐4‐methoxytriphenylamine ( PMOTPA ), and poly‐N,N‐bis(4‐methoxyphenyl)‐N′,N′‐diphenyl‐p‐phenylenediamine ( PMOPD ), were synthesized from the nickel‐catalyzed Yamamoto and oxidative coupling reaction with FeCl3. All synthesized polymers could be well characterized by 1H and 13C NMR spectroscopy. These polymers possess good solubility in common organic solvent, thermal stability with relatively high glass‐transition temperatures (Tgs) in the range of 152–273 °C, 10% weight‐loss temperature in excess of 480 °C, and char yield at 800 °C higher than 79% under a nitrogen atmosphere. They were amorphous and showed bluish green light (430–487 nm) fluorescence with quantum efficiency up to 45–62% in NMP solution. The hole‐transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. All polymers exhibited reversible oxidation redox peaks and Eonset around 0.44–0.69 V versus Ag/AgCl and electrochromic characteristics with a color change under various applied potentials. The series of PMOTPA and PMOPD also showed p‐type characteristics, and the estimated hole mobility of O ‐ PMOTPA and Y ‐ PMOPD were up to 1.5 × 10?4 and 5.6 × 10?5 cm2 V?1 s?1, respectively. The FET results indicate that the molecular weight, annealing temperature, and polymer structure could crucially affect the charge transporting ability. This study suggests that triphenylamine‐containing conjugated polymer is a multifunctional material for various optoelectronic device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4037–4050, 2009  相似文献   

14.
Here, we report a new carboxylic‐functionalized water soluble π‐conjugated polymer for selective detection of highly toxic Hg2+ in neutral pH condition. carboxylic‐functionalized thiophene containing oligophenylenevinylene was synthesized and polymerized under oxidative route to obtain water soluble polymer. Free carboxylic groups present in the π‐conjugated materials provide opportunity to use pH as external stimuli for studying secondary interaction such as hydrogen bonding and aromatic π‐stacking of the chromophores. The pH changes strongly influence on the molecular interactions in the monomer, whereas the long chain polymer was less disturbed. The polymer showed high selectivity for detecting Hg2+ ions compared with any other transition metal ions in water. The detection efficiency of the polymer was found almost 40 times higher than that of its monomeric unit. Stern‐Volmer constant for the Hg2+ ion sensing was determined through concentration dependent studies as 6.4 × 105 M?1. The carboxylic‐functionalized polymer showed reversibility in the metal‐ion detecting capabilities which was further investigated by NaCl complexation with Hg2+ complex. Both funneling of excitation energy to the Hg2+ center and also excitation energy migration through chain π‐conjugated backbone were correlated to the superior sensing characteristics of the polymer compared to its monomeric counterpart. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5144–5157, 2009  相似文献   

15.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

16.
Polymer nanoparticles are readily obtainable by rapidly mixing a dilute polymer solution and a poor solvent. The nanoparticles of poly(vinylphenol), poly(vinylidene fluoride), and emeraldine base polyaniline prepared by nanoprecipitation become sticky when their diameters decrease down to a few tens of nanometers, and such polymer nanoparticles spontaneously assemble into rigid fractal networks of the nanoparticles. By filtering these fibrous nanoparticle networks on a microfiltration membrane, ultrafiltration membranes with a thin free‐standing filter cake layer made of nanoparticles are obtainable. The nanoparticle membranes are robust at least up to the applied pressure of 2 MPa and can separate 99% of 10 nm Au nanoparticles from the aqueous dispersion at the flux of more than 1835 L m?2 h?1 even at very low pressure difference of 0.08 MPa. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 615–620  相似文献   

17.
An amphiphilic comb polymer consisting of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) [P(VDF‐co‐CTFE)] main chains and poly(oxyethylene methacrylate) (POEM) side chains was synthesized using direct initiation of the chlorine atoms in CTFE units through atom transfer radical polymerization, as confirmed by 1H NMR and FTIR spectroscopy. The P(VDF‐co‐CTFE)‐g‐POEM comb polymer was introduced as an additive to prepare poly(vinylidene fluoride) antifouling ultrafiltration membranes. As the contents of comb polymer increased, the mechanical properties of membranes slightly decreased due to the decreased crystallinity of the membranes, as revealed by universal testing machine and X‐ray diffraction. However, water contact angle measurement and X‐ray photoelectron spectroscopy showed that the hydrophilic POEM segments spontaneously segregated on the membrane surfaces. As a result, the antifouling property of the membranes containing P(VDF‐co‐CTFE)‐g‐POEM comb polymer was considerably improved with a slight change of water flux. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 183–189, 2010  相似文献   

18.
A novel conjugated polymer, poly(thienylene‐vinylene‐thienylene) with cyano substituent ( CN‐PTVT ) was synthesized via Stille coupling for the application in air stable field‐effect transistor and polymer solar cell. The polymer was characterized by 1H NMR, elemental analysis, UV‐vis absorption and photoluminescence spectroscopy, TGA, cyclic voltammetry and XRD analysis. CN‐PTVT exhibits a good thermal stability with 5% weight loss at 306 °C. The FET hole mobility of the polymer reached 5.9 × 10?3 cm2 V?1 s?1 with Ion/Ioff ratio of 4.9 × 104, which is one of the highest performance among the air‐stable amorphous polymers. The polymer solar cell based on CN‐PTVT as donor and PCBM as acceptor shows a relatively high open‐circuit voltage of 0.82 V and a power conversion efficiency of 0.3% under the illumination of AM1.5, 100 mW/cm2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4028–4036, 2009  相似文献   

19.
Anion sensor properties of N‐alkyl‐substituted 1,4′‐diazaflavonium bromides in methanol–water were evaluated by UV–vis spectrometry. Pronounced changes were observed in the absorption spectra of all compounds for only OH?, CO32?, and CN? among F?, Cl?, Br?, I?, OH?, CO32?, NO3?, PO43?, CN?, SO42?, HSO4?, HCO3?, SCN?, NO2?, and P2O72? ions. Two new absorption bands at 385 and 685 nm accompanying the distinct color change for OH?, CO32?, and CN? ions were observed in case of all compounds. The color changes were from pink to blue for CO32? and OH? ions and from pink to purple for CN? ion. Thanks to the distinct color change, the compounds can be used as selective colorimetric anion sensors. Linear changes of absorbance of N‐heptyl‐substituted compound at 385 nm as a function of the ion concentration were used to determine CN? ion in water samples. Detection and quantification limits of the proposed method were 0.94 and 2.82 mg/L, respectively.  相似文献   

20.
Fluorescence ratio imaging is currently being used to quantitatively detect biologically active molecules in biosystems; however, two excitations of most existing fluorescent ratiometric probes account for cumbersome operating conditions for imaging. Thus, a fluorescent ratiometric probe, 6‐methoxyquinolinium–dansyl (MQ‐DS), for Cl? with single excitation/dual maximum emission has been developed. MQ‐DS can preferably localize into lysosomes and display excellent photostability. Upon excitation at a single wavelength, it responds precisely and instantaneously to changes in Cl? concentrations, and it can be conveniently utilized to implement real‐time fluorescence ratio imaging to quantitatively track alterations in Cl? levels inside cells treated under various pH conditions, and also in zebrafish with acute wounds. The successful application of the new probe in bioimaging may greatly facilitate a complete understanding of the physiological functions of Cl?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号