首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigated the gas‐phase fragmentation reactions of a series of 2‐aroylbenzofuran derivatives by electrospray ionization tandem mass spectrometry (ESI‐MS/MS). The most intense fragment ions were the acylium ions m/z 105 and [M+H–C6H6]+, which originated directly from the precursor ion as a result of 2 competitive hydrogen rearrangements. Eliminations of CO and CO2 from [M+H–C6H6]+ were also common fragmentation processes to all the analyzed compounds. In addition, eliminations of the radicals •Br and •Cl were diagnostic for halogen atoms at aromatic ring A, whereas eliminations of •CH3 and CH2O were useful to identify the methoxyl group attached to this same ring. We used thermochemical data, obtained at the B3LYP/6‐31+G(d) level of theory, to rationalize the fragmentation pathways and to elucidate the formation of E , which involved simultaneous elimination of 2 CO molecules from B .  相似文献   

3.
4.
5.
Fragmentation reactions of β‐hydroxymethyl‐, β‐acetoxymethyl‐ and β‐benzyloxymethyl‐butenolides and the corresponding γ‐butyrolactones were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) using collision‐induced dissociation (CID). This study revealed that loss of H2O [M + H ?18]+ is the main fragmentation process for β‐hydroxymethylbutenolide (1) and β‐hydroxymethyl‐γ‐butyrolactone (2). Loss of ketene ([M + H ?42]+) is the major fragmentation process for protonated β‐acetoxymethyl‐γ‐butyrolactone (4), but not for β‐acetoxymethylbutenolide (3). The benzyl cation (m/z 91) is the major ion in the ESI‐MS/MS spectra of β‐benzyloxymethylbutenolide (5) and β‐benzyloxymethyl‐γ‐butyrolactone (6). The different side chain at the β‐position and the double bond presence afforded some product ions that can be important for the structural identification of each compound. The energetic aspects involved in the protonation and gas‐phase fragmentation processes were interpreted on the basis of thermochemical data obtained by computational quantum chemistry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
7.
8.
The development and validation of analytical methods is a key to succeed in investigating noncovalent interactions between biomolecules or between small molecules and biomolecules. Electrospray ionization mass spectrometry (ESI‐MS) was applied with a Fourier transform ion cyclotron resonance mass spectrometer (FTICR‐MS) as well as a quadrupole/time‐of‐flight tandem mass spectrometer (QqToF‐MS) for a systematic investigation of noncovalent complexes based on nucleobase pairing in an artificial and noncharged backbone topology. Synthetical β‐peptide helices covalently modified with nucleobases were organized by recognition of a sequence of four nucleobases. Specific duplexes of β‐peptide helices were obtained on the basis of hydrogen bonding base pair complementarity. Oligomer interactions were detected with defined stoichiometry and sensitivity for the respective duplex stability. FTICR‐MS and QqToF‐MS were used equally well to indicate double strand stabilities in agreement with the dissociation data determined by UV spectroscopy. Furthermore, the dissociation energies of gas phase ions of the noncovalent complexes were analyzed with collision induced dissociation (CID)‐MS/MS and infrared multiphoton dissociation (IRMPD)‐MS/MS. The CID conditions turned out to be too harsh for a differentiation of the duplex stabilities, whereas IRMPD might be developed as a technique to detect even small interaction energy differences. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Desorption ElectroSpray Ionization (DESI) ‐ Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol−1 up to more than 20 000 g.mol−1. Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI‐MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of Mn, Mw and PDI values. DESI‐Orbitrap MS results were compared to those obtained from matrix‐assisted laser desorption/ionization‐ time‐of‐flight MS and gel permeation chromatography. An application of DESI‐Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
For identification of ginsenoside enantiomers, electrospray ionization mass spectrometry (ESI‐MS) was used to generate silver complexes of the type [ginsenoside + Ag]+. Collision induced dissociation of the silver‐ginsenoside complexes produced fragment ions by dehydration, allowing differentiation of ginsenoside enantiomers by the intensity of [M + Ag ? H2O]+ ion. In the meanwhile, an approach based on the distinct profiles of enantiomer‐selective fragment ion intensity varied with collision energy was introduced to refine the identification and quantitation of ginsenoside enantiomers. Five pairs of enantiomeric ginsenosides were distinguished and quantified on the basis of the distribution of fragment ion [M + Ag ? H2O]+. This method was also extended to the identification of other type of ginsenoside isomers such as ginsenoside Rb2 and Rb3. For demonstrating the practicability of this novel approach, it was utilized to analyze the molar ratio of 20‐(S) and 20‐(R) type enantiomeric ginsenosides in enantiomer mixture in red ginseng extract. The generation of characteristic fragment ion [M + Ag ? H2O]+ likely results from the reduction of potential energy barrier of dehydration because of the catalysis of silver ion. The mechanism of enantiomer identification of ginsenosides was discussed from the aspects of computational modeling and internal energy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Electrospray (ESI) collisional-activated dissociation (CAD) tandem mass spectrometric methods for the structural characterization of inositol phosphates (InsPs) using both quadrupole and sector mass spectrometers are described. Under low-energy CAD, the [M + H](+) ions of the positional isomers of inositol phosphates, including inositol mono-, bis- and trisphosphates, yield distinguishable product-ion spectra, which are readily applicable for isomer differentiation. In contrast, the product-ion spectra arising from high-energy CAD (2 keV collision energy, floating at 50%) tandem sector mass spectrometry are less applicable for isomer identification. The differences in the product-ion spectrum profiles among the aforementioned InsP isomers become more substantial and differentiation of positional isomers can be achieved when the collison energy is reduced to 1 keV (floating at 75%). These results demonstrate that the applied collision energies play a pivotal role in the fragmentations upon CAD. The product-ion spectra are similar among the positional isomers of inositol tetrakisphosphates and of inositol pentakisphosphates. Thus, isomeric distinction for these two inositol polyphosphate classes could not be established by the tandem mass spectrometric methods that have achieved such distinctions for the less highly phosphorylated inositol phosphate classes. Under both high- and low-energy CAD, the protonated molecular species of all InsPs undergo similar fragmentation pathways, which are dominated by the consecutive losses of H(2)O, HPO(3) and H(3)PO(4).  相似文献   

13.
The fragmentation pathways of lithiated α,β‐unsaturated thioesters with different substituents were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) in positive ion mode. In mass spectrometry of the α,β‐unsaturated thioesters, Ar‐CH?CH‐CO‐S‐Ph, loss of PhSLi and elimination of a thiophenol were the two major fragmentation reactions of the lithiated molecules. The elemental compositions of all the ions were confirmed by high‐resolution Fourier transform ion cyclotron resonance tandem mass spectrometry (FTICR‐MS/MS). The thioesters studied here were para‐monosubstituted on the phenyl ring of cinnamoyl and the electron‐withdrawing groups favored loss of a thiophenol, whereas the electron‐releasing groups strongly favored the competing reaction leading to the loss of PhSLi to form a cinnamoyl cation, Ar‐CH?CHCO+. The intensity ratios of the two competitive product ions were well correlated with the σ substituent constants. The mechanisms of these two competing routes were further investigated by density functional theory (DFT) calculations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Desorption electrospray ionization (DESI) is a droplet‐based ionization method that is applied to samples in the ambient environment with little or no sample preparation. Its utility for industrial applications is explored here for the case of pharmaceutical cleaning validation. A non‐proximate large‐area DESI system was built to examine representative areas of the surfaces of reaction vessels used in active product ingredient (API) manufacturing. A large‐area sprayer capable of sampling an area of ~2.5 cm2 was coupled with a transport tube to allow sensitive, representative sampling of APIs from a stainless steel surface 1 m away from the mass spectrometer. The system was used to detect the APIs neostigmine, acebutolol, amiloride, amiodarone, ibuprofen, montelukast, potassium clavulanate, and β‐estradiol, at levels as low as 30–10 ng/cm2, easily satisfying the general acceptable limits set by the pharmaceutical industry. These levels were achieved from surfaces resembling the equipment used in API manufacturing processes at a rate of 30 s per analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
16.
The enantiomeric differentiation of a series of chiral β‐amino alcohols (A) is attempted, for the first time, by applying the kinetic method using L‐proline, L‐tryptophan, 4‐iodo‐L‐phenylalanine or 3, 5‐diiodo‐L‐tyrosine as the chiral references (Ref) and Cu2+ or Ni2+ ion (M) as the central metal ion. The trimeric diastereomeric adduct ions, [M+(Ref)2+A‐H]+, formed under electrospray ionization conditions, are subjected for collision‐induced dissociation (CID) experiments. The products ions, formed by the loss of either a reference or an analyte, detected in the CID spectra are evaluated for the enantiomeric differentiation. All the references showed enantiomeric differentiation and the Rchiral values are better for the aromatic alcohols than for aliphatic alcohols. Notably, the Rchiral values of the aliphatic amino alcohols enhanced when Ni2+ is used as the central metal ion. The experimental results are well supported by computational studies carried out on the diastereomeric dimeric complexes. The computational data of amino alcohols is correlated with that of amino acids to understand the structural interaction of amino alcohols with reference molecule and central metal ion and their role on the stabilization of the dimeric complexes. Application of flow injection MS/MS method is also demonstrated for the enantiomeric differentiation of the amino alcohols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
20.
Gas‐phase dissociation pathways of deprotonated 1,4‐naphthoquinone (NQ) derivatives have been investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS). The major decomposition routes have been elucidated on the basis of quantum chemical calculations at the B3LYP/6‐31 + G(d,p) level. Deprotonation sites have been indicated by analysis of natural charges and gas‐phase acidity. NQ anions underwent an interesting reaction under collision‐induced dissociation conditions, which resulted in the radical elimination of the lateral chain, in contrast with the even‐electron rule. Possible pathways have been suggested, and their mechanisms have been elucidated on the basis of Gibbs energy and enthalpy values for the anions previously described at each pathway. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号