首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel class of high‐flux and low‐fouling thin‐film nanofibrous composite (TFNC) membranes, containing a thin hydrophilic top‐layer coating, a nanofibrous mid‐layer scaffold and a non‐woven microfibrous support, has been demonstrated for nanofiltration (NF) applications. In this study, the issues related to the design and fabrication of a polyethersulfone (PES) electrospun nanofibrous scaffold for TFNC NF membranes were investigated. These issues included the influence of solvent mixture ratio, solute concentration, additives, relative humidity (RH), and solution flow rate on the morphology of an electrospun PES nanofibrous scaffold, the distribution of fiber diameter, the adhesion between the PES scaffold and a typical poly(ethylene terephthalate) (PET) non‐woven support, as well as the tensile properties of the nanofibrous PES/non‐woven PET composite substrates. Uniform and thin nanofibrous PES scaffolds with strong adhesion to the nanofiber‐PET non‐woven are several of the key parameters to optimize the NF performance of TFNC membranes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2288–2300, 2009  相似文献   

2.
Surface modification of poly(tetrafluoroethylene) films by plasma polymerization and deposition of glycidyl methacrylate (GMA) was carried out. The effects of glow‐discharge conditions on the chemical structure and composition of the deposited GMA polymer were analyzed by X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. XPS and FTIR results revealed that the epoxide groups in the plasma‐polymerized GMA (pp‐GMA) layer had been preserved to various extents, depending on the plasma deposition conditions. The morphology of the modified PTFE surface was investigated by atomic force microscopy (AFM). The pp‐GMA film with well‐preserved epoxide groups was used as an adhesion promotion layer to enhance the adhesion of the electrolessly deposited copper on the PTFE film. The T‐peel adhesion test results showed that the adhesion strength between the electrolessly deposited copper and the pp‐GMA‐modified PTFE (pp‐GMA‐PTFE) film was much higher than that between the electrolessly deposited copper and the pristine or the Ar plasma‐treated PTFE film. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3498–3509, 2000  相似文献   

3.
The solid‐melt interfaces between polyethylene (PE) and polyamide 6 (PA6) reinforced by in situ reactive compatibilization in a sequential two‐staged injection molding process has been studied in this work. The effects of the maleic anhydride grafted PE content and processing parameters, such as injection pressure, injection speed, melt temperature, and mold temperature, on the interfacial adhesion were investigated experimentally. The results of the interfacial adhesion characterized by lap shear measurement showed that the interfacial temperature and heat transfer between PE and PA6 interfaces play a very significant role in the bonding process. The fracture surfaces of the specimens prepared at different calculated interfacial temperature were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), which suggested that the fracture failure changes from adhesive to cohesive failure with increasing interfacial temperature. The contribution of crystalline parts of the in situ formed copolymers to the enhancement in interfacial adhesion also was determined by DSC analysis. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1112–1124, 2009  相似文献   

4.
The weak interfaces between immiscible polymer pairs typically fail through chain scission. The critical facture toughness for such interfaces is closely related to the density of intermolecular entanglements at the interface. From scaling analysis, a simple correlation between facture toughness and chain entanglement was developed. It predicts well the interfacial adhesion for many immiscible polymer pairs found in the literature. For an interface with block copolymer reinforcement, its critical fracture toughness comes from both intermolecular entanglements of homopolymers and copolymer bridges. In the chain scission regime (low copolymer coverage), the block copolymer contribution is found proportional to copolymer interfacial coverage, with the coefficient being the energy to stretch and break a copolymer chain. The chain‐breaking energy for different copolymers was evaluated and compared to literature data. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2313–2319, 2009  相似文献   

5.
We investigated an evaluation method of adhesion between two cylindrical viscoelastic materials by a point contact in a crossed‐cylinder geometry. The shape of the adhesion curve obtained in this technique is characterized not only by the maximum adhesion force, FA, but also by the adhesion force at complete separation, FS. To clarify the factors that determine the characteristic properties of the adhesion curve, the adhesion forces of a highly crosslinked polydimethylsiloxane were measured as a function of the separation velocity. As a result, FA and FS strongly depended on the separation velocity. To understand the experimental results, a simulation of the separation behavior was carried out using the Generalized Maxwell model, which could qualitatively reproduce the experimental observations. From these results, we discussed the factors that determine the adhesion curve and clarified the uniqueness and advantages of this evaluation method. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1778–1788, 2009  相似文献   

6.
Crack propagation tests were performed on an amorphous polymer, poly(methyl methacrylate), to investigate fatigue crack propagation mechanisms. A scanning laser microscope with a newly developed tensile testing machine was used to observe in situ crack propagation in compact‐type specimens. A crack usually propagated within the craze located at the crack tip under both static and cyclic loading conditions. When a crack stably propagated into the craze under static loading conditions, bright bands composed of the broken craze were observed at the edges along the crack wakes. However, there were successive ridges and valleys in place of bright bands along the crack wakes under cyclic loading conditions. When stable fatigue cracks were propagated at the loading half‐cycle in each cycle, new craze fragments appeared that were similar to the bright bands under static loading. However, the thickness of these fragments decreased in the following loading cycle, and a new valley was formed. This suggested that the valleys were formed by the contact between the fracture surfaces near the crack tip during unloading. Fatigue crack propagation is thought to be due to fibrils weakened by crack closure between fracture surfaces. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3103–3113, 2001  相似文献   

7.
The microstructure, impact strength, and rheological properties of blends consisting of high‐density polyethylene (HDPE) and maleated poly (ethylene‐octene) (POEg) and/or calcium carbonate (CaCO3) were investigated. The improvement of impact strength of HDPE/POEg was limited due to the high miscibility between them. The introduction of CaCO3 had a negative impact on the toughness of the matrix because of the poor interfacial adhesion. In ternary blends of HDPE/POEg/CaCO3, an elastomer layer was formed around CaCO3 particles due to the strong interaction between POEg and CaCO3, which improves the HDPE‐CaCO3 interfacial strength and the toughness of the blends. A significant enhancement of dynamic viscosity, storage modulus, and the low‐shear viscosity were observed as the results of the high miscibility of HDPE with POEg and strong interaction between POEg and CaCO3. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3213–3221, 2005  相似文献   

8.
Surface modification of argon‐plasma‐pretreated poly(tetrafluoroethylene) (PTFE) film via UV‐induced graft copolymerization with glycidyl methacrylate (GMA) was carried out first. Reactive adsorption of γ‐aminopropyltriethoxysilane (APS) onto the GMA graft‐copolymerized PTFE (GMA‐g‐PTFE) film surface was performed by the simple immersion of the film in the APS solution. The adsorption process was studied as a function of the APS concentration, the immersion time of the graft‐modified PTFE film in the APS solution, and the washing protocol. The chemical composition and morphology of the silane‐modified surfaces were characterized by X‐ray photoelectron spectroscopy and atomic force microscopy, respectively. The performance of the silane‐modified PTFE surface in adhesion promotion was investigated. The T‐peel adhesion strength of the evaporated Cu on the PTFE film with the reactively adsorbed organosilane increased significantly to about 12.5 N/cm. This adhesion strength was more than twice that of the assembly involving evaporated Cu on the GMA‐g‐PTFE film and about 10 times that of the assembly involving evaporated Cu on the Ar‐plasma‐treated PTFE film. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 80–89, 2000  相似文献   

9.
The adhesion between a glassy polymer melt and substrate is studied in the presence of end‐grafted chains chemically attached to the substrate surface. Extensive molecular dynamics simulations have been carried out to study the effect of the areal density ∑ of tethered chains and tensile pull velocity v on the adhesive failure mechanisms. The initial configurations are generated using a double‐bridging algorithm in which new bonds are formed across a pair of monomers equidistant from their respective free ends. This generates new chain configurations that are substantially different than the original two chains such that the systems can be equilibrated in a reasonable amount of cpu time. At the slowest tensile pull velocity studied, a crossover from chain scission to crazing is observed as the coverage increases, while for very large pull velocity, only chain scission is observed. As the coverage increases, the sections of the tethered chains pulled out from the interface form the fibrils of a craze that are strong enough to suppress chain scission, resulting in cohesive rather than adhesive failure. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 199–208, 2004  相似文献   

10.
The adhesion properties of high molecular weight polydimethylsiloxane adhesives are measured using 90°‐peel adhesion tests, in the high velocity range. Such adhesives undergo mainly adhesive failure in this regime. The influence of viscosity (non‐Newtonian), adhesive thickness, peeling velocity, and backing properties are studied, and new unexpected behaviors are shown. The role of rheology and peeling velocity can be explained by an extension of a model already presented for cohesive failure, by using a power‐law fluid for the adhesive. On the other hand, the influence of the backing rigidity reveals to be coupled with the adhesive elastic properties, this effect being correlated to the introduction of a new parameter in the model, the Weissenberg number for viscoelasticity. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2113–2122, 2007  相似文献   

11.
To develop a greater understanding of interfacial interactions between a semicrystalline polymer and a glassy polymer, adhesion tests were performed on very thin layers of poly(ethylene oxide) (PEO) sandwiched between two layers of poly(tetramethyl bisphenol A polycarbonate) (TMPC). The tests were designed to provide intimate contact between the surfaces while they were heated above the melting point of the PEO and cooled back to room temperature. A contact mechanics approach, based on the Johnson, Kendall, and Roberts theory, was used to determine values of the energy release rate describing the energetic driving force for crack propagation within the interfacial region. The ability to measure crack propagation at large values of the energy release rate was limited by rupture of the silicone elastomer that was used to provide a sufficiently compliant matrix for the adhesion experiment. By cycling the tensile stress at relatively low loading levels, we were able to measure fatigue crack propagation at values of the energy release rate that did not result in failure of the elastomer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3809–3821, 2004  相似文献   

12.
Surface wrinkles are interesting since they form spontaneously into well‐defined patterns. The mechanism of formation is well‐studied and is associated with the development of a critical compressive stress that induces the elastic instability. In this work, we demonstrate surface wrinkles that dynamically change in response to a stimulus can improve interfacial adhesion with a hydrogel surface through the dynamic evolution of the wrinkle morphology. We observe that this control is related to the local pinning of the crack separation pathway facilitated by the surface wrinkles during debonding, which is dependent on the contact time with the hydrogel. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

13.
The continuous‐multilayer model introduced in our previous study for the Tg behavior of thin films is adapted to nanocomposite systems. Tg enhancement in both thin films and nanocomposites with attractive interfacial interactions can be explained by the same model. Various shapes of nanoparticles are proposed to rationalize the adaptation of the one‐dimensional model for the Tg behavior of thin film to three‐dimensional system such as nanocomposite. The tendency of predicted Tg enhancements in poly(methyl methacrylate) and P2VP nanocomposites with silica particles are qualitatively fit to experimental data in literatures. For the further quantitative fitting, the model is partially modified with the consideration for other factors affecting Tg deviation in nanocomposite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2281–2287, 2009  相似文献   

14.
Microfibrillated cellulose (MFC), which consists of a web‐like array of cellulose fibrils having a diameter in the range of 10–100 nm, was incorporated into a cellulose acetate (CA) matrix to form a totally biobased structural composite. Untreated and a 3‐aminopropyltriethoxysilane (APS) surface treated MFC was combined with a CA matrix by film casting from an acetone suspension. The effectiveness of the surface treatment was determined by infrared spectroscopy and X‐ray photoelectron spectroscopy. The Young's moduli of APS treated MFC composite films increase with increasing MFC content from 1.9 GPa for the CA to 4.1 GPa at 7.5 wt % of MFC, which is more than doubled. The tensile strength of the composite film increases to a maximum of 63.5 MPa at 2.5 wt % compared to the CA which has a value of 38 MPa. The thermal stability of composites with treated MFC is also better than the untreated MFC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 153–161, 2010  相似文献   

15.
An analytical model based on the Johnson–Kendall–Roberts (JKR) theory of adhesion was used to study the contact mechanics and adhesion of periodically rough surfaces. The relation of the applied load to the contact area and the work of adhesion W was found in closed form for arbitrary surface profiles. Our analysis showed that when the parameter [where α* is a numerical constant of order one, β is the aspect ratio of a typical surface profile (or asperity), and ρ is the number of asperities per unit length], the surfaces will jump into contact with each other with no applied load, and the contact area will continue to expand until the two surfaces are in full contact. The theory was then extended to the non‐JKR regime in which the region where the surface forces act is no longer confined to a small region near the contact zone. Exact solution was also obtained for this case. An exact analysis of the effect of entrapped air on the mechanics of adhesion and contact was also enacted. The results showed that interaction between asperities should be taken into consideration in contact‐mechanics models of adhesion or friction. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1195–1214, 2001  相似文献   

16.
A theoretical analysis is performed for the study of the bonding of a viscoelastic rough surface to a rigid substrate. The mechanics of contact and adhesion are studied with the Dugdale–Barenblatt model for surface interaction. Exact solutions are obtained for arbitrary surface profiles and loading histories. Detailed solutions are given for a power‐law viscoelastic material. This solution is used to determine the time for the self‐bonding of surfaces (solid sintering under zero load). The time to self‐bonding is shown to be extremely sensitive to the aspect ratio of the asperities. A closed form expression is derived for the time needed to achieve full contact when the surfaces are compressed with a load that increases linearly with time. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 545–561, 2002; DOI 10.1002/polb.10113  相似文献   

17.
Topological patterns on polymer surfaces can significantly alter and control adhesion. In this study, the effect of surface wrinkles on a spherical surface on adhesion has been studied. Surface wrinkling induced by swelling of a crosslinked polydimethylsiloxane elastomer constrained by a stiff, thin surface layer (silicate) is used to produce topographic features of various length scales over a large curved area. By controlling the properties of the stiff layer and the applied strain conditions, surface wrinkles of varying amplitude and wavelength are obtained. The effect of wrinkle morphology on adhesion is quantified, and the results display a transition from enhancement of adhesion to decrease depending upon wrinkle dimensions. A simple phenomenological model is proposed that describes the change of adhesion behavior as a function of wrinkle morphology. Our results provide a critical understanding toward tuning the adhesion behavior of nonplanar surfaces consisting of periodic topographic structures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

18.
Improvement of primer adhesion to thermoplastic olefins (TPOs) by methane plasma polymerization with a low‐temperature cascade arc discharge was investigated. Methane plasma with a low‐temperature cascade arc plasma torch can be used for improving the primer adhesion to TPOs. Tape‐adhesion tests (ASTM 3359‐92a method) demonstrated this improvement, with a rating of 0 for untreated TPOs and 5 for methane plasma‐polymerized TPOs at certain plasma conditions even for aging at 60 °C and 80% relative humidity for 5 days. The adhesion to primer for the soft, flexible TPOs (ETA‐3041c and ETA‐3101) was easily enhanced. The adhesion to primer for the hard and brittle TPOs (ETA‐3183) needs to optimize the plasma conditions to pass the dry‐ and wet‐adhesion test with methane plasmas. To relate the surface characteristics of methane plasma‐polymerized TPOs to adhesion performance with primer, the wettability and polarity of TPOs were evaluated by the contact‐angle measurements of primer and deionized water to TPOs. TPO surface morphology was evaluated with scanning electron microscopy. The surface composition was characterized with electron spectroscopy for chemical analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2004–2021, 2003  相似文献   

19.
Immiscible polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blends with two different compositions, one (PP/EVA = 80/20) exhibits the typical sea‐island morphology and the other (PP/EVA = 60/40) exhibits the cocontinuous morphology, were prepared with different contents of f‐MWCNTs. The fracture behaviors, including notched Izod impact fracture and single‐edge notched tensile (SENT) fracture, were comparatively studied to establish the role of f‐MWCNTs in influencing the fracture toughness of PP/EVA blends. Our results showed that, for PP/EVA (80/20) system, f‐MWCNTs do not induce the fracture behavior change apparently. However, for PP/EVA (60/40) system, the fracture toughness of the blend increases dramatically with the increasing of f‐MWCNTs content. More severe plastic deformation accompanied by the fibrillar structure formation was observed during the SENT test. Furthermore, SENT test shows that the significant improvement in fracture toughness of PP/EVA (60/40) with f‐MWCNTs is contributed to the simultaneous enhancement of crack initiation energy and crack propagation energy, but largely dominated by crack propagation stage. Further results based on crystalline structures and morphologies of the blends showed that a so‐called dual‐network structure of EVA and f‐MWCNTs forms in cocontinuous PP/EVA blends, which is thought to be the main reason for the largely improved fracture toughness of the sample. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1331–1344, 2009  相似文献   

20.
Improvement of primer adhesion to thermoplastic olefins (TPOs) by surface modification with a low‐temperature cascade arc discharge‐air plasmas was investigated. Air plasma with a low‐temperature cascade arc plasma torch can be used for improving the primer adhesion to TPOs. Tape‐adhesion tests (ASTM 3359‐92a method) demonstrated this improvement with a rating of “0” for untreated TPOs and “5” for air plasma‐modified TPOs at certain plasma conditions even for aging at 60 °C and 80% relative humidity for 5 days. The adhesion to primer for the soft and flexible kind of TPOs (ETA‐3041c and ETA‐3101) was easily enhanced. The adhesion to primer for the hard and brittle TPOs (ETA‐3183) needs to optimize the plasma conditions to pass the wet‐adhesion test using air plasmas. To relate the surface characteristics of air plasma‐modified TPOs to adhesion performance with primer, the wettability and polarity of TPOs were evaluated by the contact‐angle measurements of primer and deionized water to TPOs. TPO surface morphology was evaluated using scanning electron microscopy. The surface composition was characterized with electron spectroscopy for chemical analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 623–637, 2002; DOI 10.1002/polb.10122  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号