共查询到20条相似文献,搜索用时 0 毫秒
1.
Alp H. Alidedeoglu Adam W. York Charles L. McCormick Sarah E. Morgan 《Journal of polymer science. Part A, Polymer chemistry》2009,47(20):5405-5415
We report the direct homopolymerization and block copolymerization of 2‐aminoethyl methacrylate (AEMA) via aqueous reversible addition‐fragmentation chain transfer (RAFT) polymerization. The controlled “living” polymerization of AEMA was carried out directly in aqueous buffer using 4‐cyanopentanoic acid dithiobenzoate (CTP) as the chain transfer agent (CTA), and 2,2′‐azobis(2‐imidazolinylpropane) dihydrochloride (VA‐044) as the initiator at 50 °C. The controlled “living” character of the polymerization was verified with pseudo‐first order kinetic plots, a linear increase of the molecular weight with conversion, and low polydispersities (PDIs) (<1.2). In addition, well‐defined copolymers of poly(AEMA‐b‐HPMA) have been prepared through chain extension of poly(AEMA) macroCTA with N‐(2‐hydroxypropyl)methacrylamide (HPMA) in water. It is shown that the macroCTA can be extended in a controlled fashion resulting in near monodisperse block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5405–5415, 2009 相似文献
2.
Patrick Theato 《Journal of polymer science. Part A, Polymer chemistry》2008,46(20):6677-6687
Monomers bearing an activated ester group can be polymerized under various controlled polymerization techniques, such as ATRP, NMP, RAFT polymerization, or ROMP. Combining the functionalization of polymers via polymeric activated esters with these controlled polymerization techniques generate possibilities to realize highly functionalized polymer architectures. Within this highlight two different research areas of activated esters in polymer science will be discussed: (i) the preparation of defined reactive polymer architectures by controlled polymerization techniques and (ii) the preparation of defined reactive thin films. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6677–6687, 2008 相似文献
3.
Yulia A. Vasilieva Charles W. Scales David B. Thomas Ryan G. Ezell Andrew B. Lowe Neil Ayres Charles L. McCormick 《Journal of polymer science. Part A, Polymer chemistry》2005,43(14):3141-3152
The polymerization of methacrylamide (MAM) was performed in aqueous media via reversible addition fragmentation chain transfer (RAFT) polymerization with the dithiobenzoate chain‐transfer agent (CTA) 4‐cyanopentanoic acid dithiobenzoate (CTP) and 4,4′‐azobis(4‐cyanopentanoic acid) (V‐501) as initiator. The polymerization in unbuffered water at 70 °C with a CTP/V‐501 ratio of 1.5 was controlled for the first 3 h, after which the molecular weight distribution broadened and a substantial deviation of the experimental from the theoretical molecular weight occurred, presumably because of a loss of CTA functionality at longer polymerization times. Conducting the polymerization in an acidic buffer afforded a well‐defined homopolymer (Mn = 23,800 g/mol, Mw/Mn = 1.08). To demonstrate the controlled/living nature of the system, a block copolymer of MAM and acrylamide was successfully prepared (Mn = 33,800 g/mol, Mw/Mn = 1.25) from a polymethacrylamide macro‐CTA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3141–3152, 2005 相似文献
4.
Chunzhao Li Brian C. Benicewicz 《Journal of polymer science. Part A, Polymer chemistry》2005,43(7):1535-1543
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005 相似文献
5.
John Moraes Thomas Maschmeyer Sébastien Perrier 《Journal of polymer science. Part A, Polymer chemistry》2011,49(13):2771-2782
We describe a facile, one‐pot, two‐step polymerization towards synthesizing block co‐polymers bearing reactive isocyanate functional groups. Reversible addition fragmentation chain transfer (RAFT) polymerization is used to mediate the co‐polymerization of isocyanate‐bearing monomers dimethyl meta‐isopropenyl benzyl isocyanate (TMI) and 2‐isocyanatoethyl methacrylate (ICEMA) with styrene and methyl methacrylate (MMA), respectively. ICEMA was incorporated into the polymer at a faster rate than TMI and its unhindered isocyanate group was found to be more reactive than the hindered isocyanate group of TMI. Both the TMI/styrene and the MMA/ICEMA systems maintain the reactivity of the isocyanate functionality, which was exploited by attaching representative hydroxyl‐bearing small and large molecules as well as solid substrates to the block co‐polymers. Thus, we demonstrate the versatility of the block co‐polymer system as a basis for forming branched polymers or as grafts for a solid substrate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
6.
Multiblock polymers were prepared by combination of ATRP (CuBr/tris[(2‐pyridyl)methyl]amine) and RAFT polymerization involving cyclic trithiocarbonate (CTTC). In the combined polymerization system, the ATRP was introduced as constant radical source, CTTC underwent ring‐opening polymerization, and the incorporated trithiocarbonate moieties derived from CTTCs performed as RAFT agent. Through the integrated process, multiblock polymers containing predictable average block number together with controlled molecular weight of the blocks were prepared by one‐pot polymerization. The average block number of polymer was controlled by concentration ratio of CTTC to alkyl halide in ARTP, and the molecular weight of block were well regulated by concentration of CTTC and monomer conversion. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2425–2429, 2010 相似文献
7.
Christy D. Petruczok Richard F. Barlow Devon A. Shipp 《Journal of polymer science. Part A, Polymer chemistry》2008,46(21):7200-7206
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008 相似文献
8.
Meiliana Siauw Brian S. Hawkett Sébastien Perrier 《Journal of polymer science. Part A, Polymer chemistry》2012,50(1):187-198
We demonstrate the ability of the reversible addition‐fragmentation chain transfer (RAFT) process to produce well‐defined block co‐oligomers for which each block has a narrow molecular weight distribution and degrees of polymerization ranging from 2 to 33. We exploit RAFT versatility to control the structure of the co‐oligomers and produce amphiphilic block co‐oligomers of styrene, acrylic acid and ethylene glycol. A detailed study shows that the amphiphilic diblock co‐oligomers self‐assemble in solution and form micelles or particles, depending on the hydrophobicity of the diblock. These oligomers present an excellent alternative to traditional amphiphilic molecules, by combining the properties of polymers with those of single molecule surfactants. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
9.
Kerstin T. Wiss Patrick Theato 《Journal of polymer science. Part A, Polymer chemistry》2010,48(21):4758-4767
The synthesis of block copolymers via polymer conjugation of well‐defined building blocks offers excellent control over the structures obtained, but often several coupling strategies need to be explored to find an efficient one depending on the building blocks. To facilitate the synthesis of polymers with adjustable functional end‐groups for polymer conjugation, we report on the combination of activated ester chemistry with RAFT polymerization using a chain transfer agent (CTA) with a pentafluorophenyl ester (PFP‐CTA), which allows for flexible functionalization of either the CTA prior to polymerization or the obtained polymer after polymerization. Different polymethacrylates, namely PMMA, P(t‐BuMA) and PDEGMEMA, were synthesized with an alkyne‐CTA obtained from the aminolysis of the PFP‐CTA with propargylamine, and the successful incorporation of the alkyne moiety could be shown via 1H and 13C NMR spectroscopy and MALDI TOF MS. Further, the reactive α‐end‐groups of polymers synthesized using the unmodified PFP‐CTA could be converted into azide and alkyne end‐groups after polymerization, and the high functionalization efficiencies could be demonstrated via successful coupling of the resulting polymers via CuAAC. Thus, the PFP‐CTA allows for high combinatory flexibility in polymer synthesis facilitating polymer conjugation as useful method for the synthesis of block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
10.
Xiaodong Zhou Peihong Ni Zhangqing Yu Feng Zhang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(3):471-484
Poly(fluoroalkyl mathacrylate)‐block‐poly(butyl methacrylate) diblock copolymer latices were synthesized by a two‐step process. In the first step, a homopolymer end‐capped with a dithiobenzoyl group [poly(fluoroalkyl mathacrylate) (PFAMA) or poly(butyl methacrylate) (PBMA)] was prepared in bulk via reversible addition–fragmentation chain transfer (RAFT) polymerization with 2‐cyanoprop‐2‐yl dithiobenzoate as a RAFT agent. In the second step, the homopolymer chain‐transfer agent (macro‐CTA) was dissolved in the second monomer, mixed with a water phase containing a surfactant, and then ultrasonicated to form a miniemulsion. Subsequently, the RAFT‐mediated miniemulsion polymerization of the second monomer (butyl methacrylate or fluoroalkyl mathacrylate) was carried out in the presence of the first block macro‐CTA. The influence of the polymerization sequence of the two kinds of monomers on the colloidal stability and molecular weight distribution was investigated. Gel permeation chromatography analyses and particle size results indicated that using the PFAMA macro‐CTA as the first block was better than using the PBMA RAFT agent with respect to the colloidal stability and the narrow molecular weight distribution of the F‐copolymer latices. The F‐copolymers were characterized with 1H NMR, 19F NMR, and Fourier transform infrared spectroscopy. Comparing the contact angle of a water droplet on a thin film formed by the fluorinated copolymer with that of PBMA, we found that for the diblock copolymers containing a fluorinated block, the surface energy decreased greatly, and the hydrophobicity increased. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 471–484, 2007 相似文献
11.
Yu Li Junwei Yang Brian C. Benicewicz 《Journal of polymer science. Part A, Polymer chemistry》2007,45(18):4300-4308
A functional monomer with a pendant azide moiety, 2‐azidoethyl methacrylate (AzMA), was polymerized via reversible addition‐fragmentation chain transfer (RAFT) polymerization with excellent control over the molecular weight distribution (PDI = 1.05–1.15). The subsequent copper‐catalyzed Huisgen 1,3‐dipolar cycloadditions of phenyl acetylene with polyAzMA was achieved at room temperature with high conversion. The resulting functional polymer exhibited identical 1H NMR and IR spectra with the polymer of the same molecular structure but prepared by a prefunctionalization approach, confirming the retention of the azide side chains during the RAFT polymerization of AzMA. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4300–4308, 2007 相似文献
12.
Christopher Barner‐Kowollik Philipp Vana John F. Quinn Thomas P. Davis 《Journal of polymer science. Part A, Polymer chemistry》2002,40(8):1058-1063
A novel experimental procedure is presented that allowed probing of reversible addition–fragmentation chain‐transfer (RAFT) free‐radical polymerizations for long‐lived species. The new experimental sequence consisted of gamma irradiation of a mixture of initial RAFT agent (cumyl dithiobenzoate) and monomer at ambient temperature, a subsequent predetermined waiting period without initiation source also at ambient temperature, and then heating of the reaction mixture to a significantly higher temperature. After each sequence step, the monomer conversion and molecular weight distribution were determined, indicating that controlled polymer formation occurs only during the heating period. The results indicated that stable intermediates (either radical or nonradical in nature) are present in such experiments because thermal self‐initiation of the monomer can be excluded as the reason for polymer formation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1058–1063, 2002 相似文献
13.
14.
Bruno Grignard Christine Jérôme Cédric Calberg Christophe Detrembleur Robert Jérôme 《Journal of polymer science. Part A, Polymer chemistry》2007,45(8):1499-1506
1H,1H,2H,2H‐Heptadecafluorodecyl acrylate (AC8) was polymerized by reversible addition–fragmentation chain transfer and copolymerized with 2‐hydroxyethyl acrylate with the formation of random and block copolymers, respectively. The kinetics of the (co)polymerization was monitored with 1H NMR spectroscopy and showed that the homopolymerization and random copolymerization of AC8 were under control. As a result of this control and the use of S‐1‐dodecyl‐S‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate as a chain‐transfer agent, the copolymer chains were end‐capped by an α‐carboxylic acid group. Moreover, the controlled polymerization of AC8 was confirmed by the successful synthesis of poly(1H,1H,2H,2H‐heptadecafluorodecyl acrylate)‐b‐poly(2‐hydroxyethyl acrylate) diblock copolymers, which were typically amphiphilic compounds. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1499–1506, 2007 相似文献
15.
Maria Demetriou Theodora Krasia‐Christoforou 《Journal of polymer science. Part A, Polymer chemistry》2008,46(16):5442-5451
Four well‐defined diblock copolymers and one statistical copolymer based on lauryl methacrylate (LauMA) and 2‐(acetoacetoxy)ethyl methacrylate (AEMA) were prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The polymers were characterized in terms of molecular weights, polydispersity indices (ranging between 1.12 and 1.23) and compositions by size exclusion chromatography and 1H NMR spectroscopy, respectively. The preparation of the block copolymers was accomplished following a two‐step methodology: First, well‐defined LauMA homopolymers were prepared by RAFT using cumyl dithiobenzoate as the chain transfer agent (CTA). Kinetic studies revealed that the polymerization of LauMA followed first‐order kinetics demonstrating the “livingness” of the RAFT process. The pLauMAs were subsequently used as macro‐CTA for the polymerization of AEMA. The glass transition (Tg) and decomposition temperatures (ranging between 200 and 300 °C) of the copolymers were determined using differential scanning calorimetry and thermal gravimetric analysis, respectively. The Tgs of the LauMA homopolymers were found to be around ?53 °C. Block copolymers exhibited two Tgs suggesting microphase separation in the bulk whereas the statistical copolymer presented a single Tg as expected. Furthermore, the micellization behavior of pLauMA‐b‐pAEMA block copolymers was investigated in n‐hexane, a selective solvent for the LauMA block, using dynamic light scattering. pLauMA‐b‐pAEMA block copolymers formed spherical micelles in dilute hexane solutions with hydrodynamic diameters ranging between 30 and 50 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5442–5451, 2008 相似文献
16.
Quanlong Li Fei Huo Yongliang Cui Chengqiang Gao Shentong Li Wangqing Zhang 《Journal of polymer science. Part A, Polymer chemistry》2014,52(16):2266-2278
Doubly thermoresponsive ABC brush‐linear‐linear triblock copolymer nanoparticles of poly[poly(ethylene glycol) methyl ether vinylphenyl]‐block‐poly(N‐isopropylacrylamide)‐block‐polystyrene [P(mPEGV)‐b‐PNIPAM‐b‐PS] containing two thermoresponsive blocks of poly[poly(ethylene glycol) methyl ether vinylphenyl] [P(mPEGV)] and poly(N‐isopropylacrylamide) (PNIPAM) are prepared by macro‐RAFT agent mediated dispersion polymerization. The P(mPEGV)‐b‐PNIPAM‐b‐PS nanoparticles exhibit two separate lower critical solution temperatures or phase‐transition temperatures (PTTs) corresponding to the linear PNIPAM block and the brush P(mPEGV) block in water. Upon temperature increasing above the first and then the second PTT, the hydrodynamic diameter (Dh) of the triblock copolymer nanoparticles undergoes an initial shrinkage at the first PTT and the subsequent shrinkage at the second PTT. The effect of the chain length of the PNIPAM block on the thermoresponsive behavior of the triblock copolymer nanoparticles is investigated. It is found that, the longer chains of the thermoresponsive PNIPAM block, the greater contribution on the transmittance change of the aqueous dispersion of the triblock copolymer nanoparticles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2266–2278 相似文献
17.
Chao Li Yaowen Li Jiangfei Liu Yingfeng Tu Wei Zhang Nianchen Zhou Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2014,52(5):691-698
In this work, a benzenedinitrile functionalized monomer, 2‐methyl‐acrylic acid 6‐(3,4‐dicyano‐phenoxy)‐hexyl ester, was successfully polymerized via the reversible addition‐fragmentation chain transfer method. The polymerization behavior conveyed the characteristics of “living”/controlled radical polymerization: the first‐order kinetics, linear increase of number‐average molecular weight with monomer conversion, narrow molecular weight distribution, and successful chain‐extension experiment. The soluble Zn(II) phthalocyanine (Pc)‐containing (ZnPc) polymers were achieved by post‐polymerization modification of the obtained polymers. The Zn(II) phthalocyanine‐functionalized polymer was characterized by FTIR, UV–vis, fluorescence, atomic absorption spectroscopy, and thermogravimetric analysis. The potential application of above ZnPc‐functionalized polymer as electron donor material in bulk heterojunction organic solar cell was studied. The device with ITO/PEDOT:PSS/ZnPc‐Polymer/PC61BM/LiF/Al structure provided a power conversion efficiency of 0.014%, fill factor of 0.24, open circuit voltage (Voc) of 0.21 V, and short‐circuit current (Jsc) of 0.28 mA/cm2. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 691–698 相似文献
18.
A. Bowes J. B. Mcleary R. D. Sanderson 《Journal of polymer science. Part A, Polymer chemistry》2007,45(4):588-604
Two trithiocarbonate reversible addition fragmentation chain transfer (RAFT) agents are compared in miniemulsion polymerization of styrene and butyl acrylate and the formation of seeded emulsion block copolymers. The order of block synthesis and the number of block segments per polymer are discussed. The use of nonionic surfactants is examined and the type of surfactant in relation to the monomer used is found to have a significant affect on latex formation. Conditions are shown by which AB and ABA type block copolymers can be successfully prepared via a seeded RAFT‐mediated emulsion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 588–604, 2007 相似文献
19.
Yansheng Qiu Wei Zhang Yuefang Yan Jian Zhu Zhengbiao Zhang Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2010,48(22):5180-5188
Three tetrafunctional bromoxanthate agents (Xanthate3‐Br, Xanthate2‐Br2, and Xanthate‐Br3) were synthesized. Initiative atom transfer radical polymerizations (ATRP) of styrene (St) or reversible addition fragmentation chain transfer (RAFT) polymerizations of vinyl acetate (VAc) proceeded in a controlled manner in the presence of Xanthate3‐Br, Xanthate2‐Br2, or Xanthate‐Br3, respectively. The miktoarm star‐block copolymers containing polystyrene (PS) and poly(vinyl acetate) (PVAc) chains, PSn‐b‐PVAc4‐n (n = 1, 2, and 3), with controlled structures were successfully prepared by successive RAFT and ATRP chain‐extension experiments using VAc and St as the second monomers, respectively. The architecture of the miktoarm star‐block copolymers PSn‐b‐PVAc4‐n (n = 1, 2, and 3) were characterized by gel permeation chromatography and 1H NMR spectra. Furthermore, the results of the cleavage of PS3‐b‐PVAc and PVAc2‐b‐PS2 confirmed the structures of the obtained miktoarm star‐block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
20.
Maggy Manguian Maud Save Bernadette Charleux 《Macromolecular rapid communications》2006,27(6):399-404
Summary: A well‐defined homopolymer of 2‐(diethylamino)ethyl methacrylate has been synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization using (4‐cyanopentanoic acid)‐4‐dithiobenzoate as a chain transfer agent. The corresponding protonated homopolymer with a very reactive dithiobenzoate end group has been used as a water‐soluble macromolecular chain transfer agent in the batch emulsion polymerization of styrene without any surfactant. The reaction leads to a stable latex, as a result of the in‐situ formation of an amphiphilic block copolymer stabilizer, via transfer reaction to the dithioester functions during the nucleation step. The work does not intend to apply controlled free‐radical polymerization in an aqueous dispersed system but takes advantage of the RAFT technique to create a well‐defined polyelectrolyte, with a high chain‐end reactivity.