首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Aromatic liquid crystalline epoxy resin (LCE) based on naphthalene mesogen was synthesized and cured with aromatic diamines to prepare heat‐resistant LCE networks. Diaminodiphenylester (DDE) and diaminodiphenylsulfone (DDS) were used as curing agents. The curing reaction and liquid crystalline phase of LCE were monitored, and mechanical and thermal properties of cured LCE network were also investigated. Curing and postcuring peaks were observed in dynamic DSC thermogram. LCE network cured with DDE displayed liquid crystalline phase in the curing temperature range between 183 and 260°C, while that cured with DDS formed one between 182 and 230°C. Glass transition temperature of cured LCE network was above 240°C, and crosslinked network was thermally stable up to 330°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 419–425, 1999  相似文献   

2.
Several kinds of organic–inorganic hybrids were synthesized from an epoxy resin and a silane alkoxide with a primary amine‐type curing agent or tertiary amine curing catalyst. In the hybrid systems cured with the primary amine‐type curing agent, the storage modulus in the high‐temperature region increased, and the peak area of the tan δ curve decreased. Moreover, the mechanical properties were improved by the hybridization of small amounts of the silica network. However, these phenomena were not observed in the hybrid systems cured with the tertiary amine catalyst. The differences in the network structures of the hybrid materials with the different curing processes were characterized with Fourier transform infrared (FTIR). In the hybrid systems cured with the primary amine‐type curing agent, FTIR results showed the formation of a covalent bond between silanol and hydroxyl groups that were generated by the reaction of an epoxy group with an active hydrogen of the primary amine. However, this phenomenon was not observed in the hybrids cured with the tertiary amine. The hybrids with the primary amine showed a homogeneous microstructure in transmission electron microscopy observations, although the hybrids cured with the tertiary amine showed a heterogeneous structure. These results mean that the differences in the interactions between the organic and inorganic phases significantly affect the properties and microstructures of the resultant composites. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1071–1084, 2001  相似文献   

3.
We report on the structures and electro‐optical properties of epoxy/acrylic polymer‐dispersed liquid‐crystal (PDLC) films. A thermal stimulated current (TSC) analysis was used to investigate the physical structures of PDLC. In the TSC spectrum of PDLC, three relaxation peaks were observed: the glass transition of the liquid crystal, the glass transition of the polymer matrix, and the ρ transition. The ρ transition represents the discharge behavior of space charges, and its intensity increased as the curing time and content of the curing agent dicyandiamide (DICY) increased. The pre‐UV‐cured films with different DICY contents were thermally cured at 130 °C for various periods. The electro‐optical properties of PDLC, such as the contrast ratio and switching voltage, increased as the curing time of DICY, the content of DICY, or both increased. As the ambient temperature increased from 10 to 40 °C, the contrast ratio and switching voltage of PDLC gradually decreased. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 507–514, 2001  相似文献   

4.
A novel phosphorus‐containing trifunctional novolac (dopotriol) was synthesized through the addition reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide and rosolic acid. The structure of dopotriol was confirmed with NMR spectroscopy and elemental analyses. The dopotriol was blended with phenol novolac in the ratios of 10/0, 8/2, 6/4, 4/6, 2/8, and 0/10 to serve as a curing agent for diglycidyl ether of bisphenol A. Thermal properties, such as the glass‐transition temperature, thermal decomposition temperature, and flame retardancy, moisture absorption, and dielectric properties of the cured epoxy resins were evaluated. The activity and activation energy of curing were studied with the methods of Kissinger and Ozawa by dynamic differential scanning calorimetry scans. The glass‐transition temperatures of the cured epoxy resins were 138–159 °C, increasing with the phosphorus content. This is rarely seen in the literature after the addition of a flame‐retardant element. The flame retardancy increased with the phosphorus content, and a UL‐94 V‐0 grade was achieved with a phosphorus content of 1.87%. Similar dielectric properties and moisture absorption were observed for these phosphorus‐containing epoxy resins, and this implied that the addition of phosphorus to epoxy did not affect the dielectric properties and moisture absorption. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2862–2873, 2005  相似文献   

5.
The evolution of structure, and thermal and dynamic mechanical properties of a liquid crystalline epoxy during curing has been studied with differential scanning calorimetry (DSC), polarized optical microscopy, x-ray scattering, and dynamic mechanical analysis. The liquid crystalline epoxy was the diglycidyl ether of 4,4′-dihydroxy-α-methylstilbene (DGEDHMS). Two curing agents were used in this study: a di-functional amine, the aniline adduct of DGEDHMS, and a tetra-functional sulfonamido amine, sulfanilamide. The effects of curing agent, cure time, and cure temperature have been investigated. Isothermal curing of the liquid crystalline epoxy with the di-functional amine and the tetra-functional sulfonamido amine causes an increase in the mesophase stability of the liquid crystalline epoxy resin. The curing also leads to various liquid crystalline textures, depending on the curing agent and cure temperature. These textures coarsen during the isothermal curing. Moreover, curing with both curing agents results in a layered structure with mesogenic units aligned perpendicular to the layer surfaces. The layer thickness decreases with cure temperature for the systems cured with the tetra-functional curing agent. The glass transition temperature of the cured networks rises with increasing cure temperature due to the increased crosslink density. The shear modulus of the cured networks shows a strong temperature dependence. However, it does not change appreciably with cure temperature. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2363–2378, 1997  相似文献   

6.
A mixture of epoxy with liquid nitrile rubber, carboxyl‐terminated (butadiene‐co‐acrylonitrile) (CTBN) was cured under various temperatures. The cured resin was a two‐phase system, where spherical rubber domains were dispersed in the matrix of epoxy. The morphology development during cure was investigated by scanning electron microscope (SEM). There was slight reduction in the glass transition temperature of the epoxy matrix (Tg) on the addition of CTBN. It was observed that, for a particular CTBN content, Tg was found to be unaffected by the cure temperature. Bimodal distribution of particles was noted by SEM analysis. The increase in the size of rubber domains with CTBN content is due probably to the coalescence of the rubber particles. The mechanical properties of the cured resin were thoroughly investigated. Although there was a slight reduction in tensile strength and young's modulus, appreciable improvements in impact strength, fracture energy, and fracture toughness were observed. Addition of nitrile rubber above 20 parts per hundred parts of resin (phr) made the epoxy network more flexible. The volume fraction of dispersed rubbery phase and interfacial area were increased with the addition of more CTBN. A two‐phase morphology was further established by dynamic mechanical analysis (DMA). © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2531–2544, 2004  相似文献   

7.
Thermosetting blends of an aliphatic epoxy resin and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 4,4′‐diaminodiphenylmethane (DDM) as the curing agent. The phase behavior and morphology of the DDM‐cured epoxy/HBP blends with HBP content up to 40 wt % were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The cured epoxy/HBP blends are immiscible and exhibit two separate glass transitions, as revealed by DMA. The SEM observation showed that there exist two phases in the cured blends, which is an epoxy‐rich phase and an HBP‐rich phase, which is responsible for the two separate glass transitions. The phase morphology was observed to be dependent on the blend composition. For the blends with HBP content up to 10 wt %, discrete HBP domains are dispersed in the continuous cured epoxy matrix, whereas the cured blend with 40 wt % HBP exhibits a combined morphology of connected globules and bicontinuous phase structure. Porous epoxy thermosets with continuous open structures on the order of 100–300 nm were formed after the HBP‐rich phase was extracted with solvent from the cured blend with 40 wt % HBP. The DSC study showed that the curing rate is not obviously affected in the epoxy/HBP blends with HBP content up to 40 wt %. The activation energy values obtained are not remarkably changed in the blends; the addition of HBP to epoxy resin thus does not change the mechanism of cure reaction of epoxy resin with DDM. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 889–899, 2006  相似文献   

8.
During the curing process of a liquid‐crystalline epoxy resin, a relatively strong magnetic field was applied, and the thermomechanical properties of the cured resin were investigated. The network orientation and mechanical properties of the cured system were evaluated with wide‐angle X‐ray diffraction, dynamic mechanical analysis, and fracture toughness testing. The cured system was found to have an anisotropic network structure, which arranged along the applied field, and the anisotropy was reflected in the thermomechanical properties. In particular, the fracture toughness of the system dramatically increased when the network chains were arranged across the direction of the crack propagation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 758–765, 2004  相似文献   

9.
Nano‐sized epoxy oligosiloxanes (EO) were prepared by condensation reaction between 3‐glycidoxypropyltrimethoxysilane (GPTS) and Diphenylsilandiol (DPSD). Through a composition change of GPTS and DPSD, EO of various structure and sizes were obtained. The molecular structure and size of EO synthesized were investigated by experimental measurements. Regardless of their composition, molecular structure of EO was linear or branch. The amount of species of high molecular weight and their molecular size increased with addition of DPSD. We confirmed that epoxy groups of EO were thermally cured using a thermal initiator and curing agent. Finally, we fabricated transparent epoxy‐based hybrimer films by thermal curing of EO resins. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 756–763, 2009  相似文献   

10.
Four sorts of epoxy resins containing degradable acetal linkages were synthesized by the reaction of bisphenol A (BA) or cresol novolak (CN) resin with vinyl ethers containing a glycidyl group [4‐vinlyoxybutyl glycidyl ether (VBGE) and cyclohexane dimethanol vinyl glycidyl ether (CHDMVG)] and cured with known typical amine‐curing agents. The thermal and mechanical properties of the cured resins were investigated. Among the four cured epoxy resins, the CN‐CHDMVG resin (derived from CN and CHDMVE) exhibited relatively high glass transition temperature (Tg = ca. 110 °C). The treatment of these cured epoxy resins with aqueous HCl in tetrahydrofuran (THF) at room temperature for 12 h generated BA and CN as degradation main products in high yield. Carbon fiber‐reinforced plastics (CFRPs) were prepared by heating the laminated prepreg sheets with BA‐CHDMVG (derived from BA and CHDMVE) and CN‐CHDMVG, in which strands of carbon fibers are impregnated with the epoxy resins containing conventional curing agents and curing accelerators. The obtained CFRPs showed good appearance and underwent smooth breakdown with the aqueous acid treatment in THF at room temperature for 24 h to produce strands of carbon fiber without damaging their surface conditions and tensile strength. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
The miscibility and intermolecular-specific interactions in thermosetting blends of epoxy resin (ER) with poly(ethylene oxide) (PEO) cured with various amounts of 1,3,5-tridroxybenzene (THB) were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The glass-transition behavior indicated that all the blends were miscible and had homogeneous amorphous phases; FTIR showed that there were the intermolecular hydrogen-bonding interactions between crosslinked ER and PEO. However, both the glass-transition behavior and infrared spectroscopy also indicated that the intermolecular interactions were significantly reduced by the formation of crosslinked structures, which was shown by comparing the experimental results of poly(hydroxyether of bisphenol A) (PH)/PEO and ER/PEO blends cured with various amounts of the curing agent. In ER/PEO blends the intermolecular hydrogen-bonding interactions were much weaker than the self-association of hydroxyls of ER, which was in marked contrast to the interactions in PH/PEO blends. In ER/PEO blends with various amounts of the curing agent, the intermolecular interactions between epoxy polymers and PEO were reduced with an increasing degree of crosslinking. The results were interpreted in terms of the effect of crosslinking on the intermolecular interactions, such as steric shielding, the screening effect, and chain connectivity resulting from the formation of the three-dimensional crosslinked network, which could reduce the intermolecular hydrogen-bonding interactions among hydroxyls of ER versus ether oxygen atoms of PEO. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2567–2575, 2004  相似文献   

12.
Thermosetting blends composed of phloroglucinol‐cured bisphenol S epoxy resin and poly(ethylene oxide) (PEO) were prepared via the in situ curing reaction of epoxy in the presence of PEO, which started from initially homogeneous mixtures of diglycidyl ether of bisphenol S, phloroglucinol, and PEO. The miscibility of the blends after and before the curing reaction was established on the basis of thermal analysis (differential scanning calorimetry). Single and composition‐dependent glass‐transition temperatures (Tg's) were observed for all the blend compositions after and before curing. The experimental Tg's could be explained well by the Gordon–Taylor equation. Fourier transform infrared spectroscopy indicated that there were competitive hydrogen‐bonding interactions in the binary thermosetting blends upon the addition of PEO to the system, which was involved with the intramolecular and intermolecular hydrogen‐bonding interactions, that is, OH···O?S, OH···OH, and OH, versus ether oxygen atoms of PEO between crosslinked epoxy and PEO. On the basis of infrared spectroscopy results, it was judged that from weak to strong the strength of the hydrogen‐bonding interactions was in the following order: OH···O?S, OH···OH, and OH versus ether oxygen atoms of PEO. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 359–367, 2005  相似文献   

13.
The research activities in the development of recyclable and reprocessable covalently crosslinked networks, and the construction of polymers from renewable resources are both stemmed from the economical and environmental problems associated with traditional thermosets. However, there is little effort in combination of these two attractive strategies in material designs. This article reported a bio‐based vitrimer constructed from isosorbide‐derived epoxy and aromatic diamines containing disulfide bonds. The resulted dynamic epoxy resins showed comparable thermomechanical properties as compared to similar epoxy networks cured by traditional curing agent. Rheological tests demonstrated the fast stress relaxation of the dynamic network due to the rapid metathesis of disulfide bonds at temperature higher than glass transition temperature. This feature permitted the recycling and reprocessing of the fragmented samples for several times by hot press. The dynamic epoxy resins also exhibited shape‐memory effect, and it is demonstrated that the shape recovery ratio could be readily adjusted by controlling the stress relaxation in the temporary state at programming temperature. Moreover, the degradability of the dynamic epoxy resins in alkaline aqueous solution was also demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1790–1799  相似文献   

14.
As new bio‐based epoxy resin systems, glycerol polyglycidyl ether (GPE) and sorbitol polyglycidyl ether (SPE) were cured with tannic acid (TA) at various conditions. When the curing conditions were optimized for the improvement of thermal and mechanical properties, the most balanced properties were obtained for the GPE/TA and SPE/TA cured at 160 °C for 2–3 h at the epoxy/hydroxyl ratio of 1/1. The cured SPE/TA had a higher glass transition temperature (Tg) and tensile strength than the cured GPE/TA. Next, biocomposites of GPE/TA and SPE/TA with microfibrillated cellulose (MFC) were prepared by mixing aqueous solution of the epoxy/curing reagent with MFC, and subsequent drying and curing at the optimized condition. For both the GPE/TA/MFC and SPE/TA/MFC biocomposites, Tg and the storage modulus at rubbery plateau region increased with increasing MFC content over the studied range of 3–15 wt %. The tensile strength at 25 °C for GPE/TA/MFC biocomposite with MFC content 10 wt % was 76% higher than that of control GPE/TA, while the tensile modulus was little improved. On the other hand, the tensile strength and modulus of SPE/TA/MFC biocomposite with MFC content 10 wt % were 30 and 55% higher than those of control SPE/TA, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 425–433, 2010  相似文献   

15.
Epoxy‐grafted silicone oligomer (ESO), which has a linear silicone chain in the backbone moiety, was synthesized from a trifunctional alkoxysilane via a sol–gel reaction. Characterization of ESO was performed with 1H and 29Si NMR, Fourier transform infrared, and gel permeation chromatography. The number‐average molecular weight of ESO was 3300. By adding the silicone oligomer as the inorganic source in the curing process of the epoxy resin, novel epoxy/silica hybrid materials were prepared. It was observed by transmission electron microscope that fine silica‐rich domains of about 5‐nm diameter were uniformly dispersed in the cured epoxy matrix. Thermomechanical properties of the hybrid materials were also investigated. The storage modulus in the rubbery region and the peak area of the tan δ curve at the glass‐transition region increased and decreased, respectively, with the hybridization of the silica network. The mobility of the epoxy network chains should be considerably suppressed by the hybridization with the silica network. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1631–1639, 2005  相似文献   

16.
Thermoplastic poly(ethylene oxide) (PEO) (Mw(PEO) approximately 4000) has been used to prepare thermosetting nanocomposites incorporating diglycidyl ether of bisphenol A (DGEBA) epoxy oligomer. Blends with various PEO/DGEBA weight ratios were cured using stoichiometric portions of 4,4'-diaminodiphenylmethane. The resulting semi-interpenetrating polymer networks were studied by several techniques. Nanoscale confinement effects, thermal (glass transition, melting and crystallization temperatures) and structural features of our materials are similar to those for networks with much higher Mw(PEO) and different curing agents; however, the polyether crystallization onset occurs in our case at a lower PEO concentration; shorter PEO chains organize themselves more easily into crystalline domains. Very low estimates of the k parameter of the Gordon-Taylor equation, used to fit the compositional dependences of the dielectric and calorimetric glass transition temperatures, and a strong plasticization of the motion of the glyceryl segments (beta-relaxation) in the epoxy resin were observed. These illustrate an intensified weakening in the strength of the intermolecular interactions in the modified networks, as compared to the high strength of the self-association of hydroxyls in the neat resin. The significance of hydrogen-bonding interactions between the components for obtaining structurally homogeneous thermoset-i-thermoplastic networks is discussed.  相似文献   

17.
The effect of uniaxial orientation on the free‐volume and oxygen‐transport properties of a propylene copolymer with 4.5 wt % ethylene was examined. The free‐volume hole size and hole density were measured with positron annihilation lifetime spectroscopy. Subsequently, the free‐volume characteristics were correlated with the oxygen‐transport properties. Orientation had only a small effect on the total amount of free volume: a small increase in the hole density was offset by a small decrease in the hole size. As a result, the oxygen solubility and amorphous‐phase density were unchanged by orientation. However, a pronounced decrease in the oxygen diffusivity when the draw ratio exceeded 6 indicated a change in the dynamic free volume. This was attributed to an increasing number of taut tie chains, which retarded oxygen diffusion. The reduced amorphous chain mobility was also manifest in the increased glass‐transition temperature, decreased bulk thermal expansivity, and decreased expansivity of free‐volume holes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1230–1243, 2005  相似文献   

18.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

19.
Kinetic fragility and cooperativity length, two major characteristics of the relaxation dynamics at the glass transition, are, respectively, investigated by dynamic mechanical analysis and modulated temperature differential scanning calorimetry in a series of interpenetrated polymer networks based on acrylate and epoxy systems. The relaxation dynamics are impacted by two variables: the rigidity of the network, and the structural heterogeneity resulting from blending. However, the fragility and the cooperativity do not vary similarly. The glass transition progressively broadens as the mass fractions of acrylate and epoxy become equivalent, leading to a strong decrease in cooperativity. On the other hand, under the same conditions, the fragility transitions between the lower value of pure acrylate and the higher value of pure epoxy. This divergence helps concluding that the variations in the temperature dependence of the relaxation time are not purely related to the more or less cooperative nature of the glass transition. By splitting the fragility index in a volume contribution and an energetic contribution, it is shown that the contribution of cooperativity to the variations of the relaxation time with temperature is increased under two structural conditions: low backbone rigidity and high intermolecular interactions. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1393–1403  相似文献   

20.
The absorption/desorption behavior of a commercial cold‐cured bisphenolic epoxy resin, subjected to different treatments prior to exposure to water, was analyzed. The epoxy system has been already used as both matrix and adhesive for the manufacture and application, respectively, of fiber reinforced polymers composites employed for rehabilitation procedures. The effects of different curing, conditioning, and storing conditions on the water absorption/desorption process taking place in the cured resin were evaluated. The different conditioning procedures used to dry the specimens before their exposure to water caused a different extent of physical aging and of curing on each system, influencing the amount and the rate of diffusion of the water molecules inside the specimens. Moreover, if the specimens are subjected to thermohygrometric cycles prior to immersion in water, the rate of diffusion and the amount of water also depends on the presence of water molecules inside the cured resins not easy to remove by any drying treatment. During all the hygrometric treatments performed, a deaging process took place. The kinetic of this deaging process for the not‐fully cured systems depends on the additional crosslinking taking place in the samples. The different procedures used to condition the specimens also affect the variations in glass transition temperature (Tg) of the cured systems during and after immersion in water. Finally, the different drying procedures employed proved to be not equally appropriate for cold‐cured epoxy resins. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1320–1336, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号