首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Three amphiphilic rod‐coil diblock copolymers, poly(2‐ethyl‐2‐oxazoline‐b‐γ‐benzyl‐L ‐glutamate) (PEOz‐b‐PBLG), incorporating the same‐length PEOz block length and various lengths of their PBLG blocks, were synthesized through a combining of living cationic and N‐carboxyanhydride (NCA) ring‐opening polymerizations. In the bulk, these block copolymers display thermotropic liquid crystalline behavior. The self‐assembled aggregates that formed from these diblock copolymers in aqueous solution exhibited morphologies that differed from those obtained in α‐helicogenic solvents, that is, solvents in which the PBLG blocks adopt rigid α‐helix conformations. In aqueous solution, the block copolymers self‐assembled into spherical micelles and vesicular aggregates because of their amphiphilic structures. In helicogenic solvents (in this case, toluene and benzyl alcohol), the PEOz‐b‐PBLG copolymers exhibited rod‐coil chain properties, which result in a diverse array of aggregate morphologies (spheres, vesicles, ribbons, and tube nanostructures) and thermoreversible gelation behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3108–3119, 2008  相似文献   

2.
    
The formation of integral asymmetric membranes from ABC triblock terpolymers by non‐solvent‐induced phase separation is shown. They are compared with the AB diblock copolymer precursors. Triblock terpolymers of polystyrene‐block‐poly(2‐vinylpyridine)‐block‐poly(ethylene oxide) (PS‐b‐P2VP‐b‐PEO) with two compositions are investigated. The third block supports the formation of a membrane in a case, where the corresponding diblock copolymer does not form a good membrane. In addition, the hydrophilicity is increased by the third block and due to the hydroxyl group the possibility of post‐functionalization is given. The morphologies are imaged by scanning electron microscopy. The influence of the PEO on the membrane properties is analyzed by water flux, retention, and dynamic contact angle measurements.

  相似文献   


3.
    
We report the synthesis and characterization of a polythiophene block copolymer (P4) selectively functionalized with diaminopyrimidine moieties and a thymine tethered fullerene derivative (F1). Self‐assembly between P4 and F1 through “three‐point” complementary hydrogen bonding is studied by 1H NMR spectroscopy and differential scanning calorimetry. A large Stern‐Volmer constant (KSV) of 1.2 × 105 M?1 is observed from fluorescence quenching experiments, revealing strong complexation between these two components. Solar cells employing P4 and F1 at different weight ratios as active layers are fabricated and tested; corresponding thin film morphologies are studied in detail by optical imaging and atomic force microscopy. Correlations between polymer complex structures, film morphologies, and device performance are discussed. Thermal stability of benchmark poly(3‐hexylthiophene) bulk heterojunction solar cells is found to be improved by the addition of a few weight percent of P4/F1 complexes as compatibilizers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3339–3350  相似文献   

4.
    
Summary: Binary symmetric diblock copolymer blends, that is, low‐molecular‐weight poly(styrene‐block‐methyl methacrylate) (PS‐b‐PMMA) and high‐molecular‐weight poly(styrene‐block‐methacrylate) (PS‐b‐PMA), self‐assemble on silicon substrates to form structures with highly ordered nanoholes in thin films. As a result of the chemically similar structure of the PMA and the PMMA block, the PMMA chain penetrates through the large PMA block that absorbs preferentially on the polar silicon substrate. This results in the formation of nanoholes in the PS continuous matrix.

An atomic force microscopy image of the thin film obtained from the blend of low‐molecular‐weight PS‐b‐PMMA and high‐molecular‐weight PS‐b‐PMA. The regular array of nanoholes in the films surface is clearly visible.  相似文献   


5.
    
Conjugated block copolymers consisting of poly(3‐hexyl thiophene) (P3HT) and a thermoresponsive polymer poly(N‐isopropyl acrylamide) (PNIPAM) with varying composition have been synthesized by facile click reaction between alkyne terminated P3HT and azide terminated PNIPAM. The composition‐dependent solubility, thermoresponsive property in water, phase behavior, electrochemical, optical, and electronic properties of the block copolymers were systematically investigated. The block copolymers with higher volume fraction of PNIPAM form thermoresponsive spherical micelles with P3HT‐rich crystalline cores and PNIPAM coronas. Both X‐ray and atomic force microscopic studies indicated that the blocks copolymers showed well‐defined microphase separated nanostructures and the structure depended on the composition of the blocks. The electrochemical study of the block copolymers clearly demonstrated that the extent of charge transport through the block copolymer thin film was similar to P3HT homopolymer without any significant change in the band gap. The block copolymers showed improved or similar charge carrier mobility compared with the pure P3HT depending on the composition of the block copolymer. These P3HT‐b‐PNIPAM copolymers were interesting for fabrication of optoelectronic devices capable of thermal and moisture sensing as well as for studying the thermoresponsive colloidal structures of semiconductor amphiphilic systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1785–1794  相似文献   

6.
    
Block copolymers with increased Flory–Huggins interaction parameters (χ) play an essential role in the production of sub‐10 nm nanopatterns in the growing field of directed self‐assembly for next generation lithographic applications. A library of PDMS‐b‐PEO block copolymers were synthesized by click chemistry and their interaction parameters (χ) determined. The highest χ measured in our samples was 0.21 at 150 °C, which resulted in phase‐separated domains with periods as small as 7.9 nm, suggesting that PDMS‐b‐PEO is a prime candidate for sub‐10 nm nanopatterning. To suppress PEO crystallization, PDMS‐b‐PEO was blended with (l )‐tartaric acid (LTA) which allows for tuning of the self‐assembled morphologies. Additionally, it was observed that the order‐disorder transition temperature (TODT) of PDMS‐b‐PEO increased dramatically as the amount of LTA in the blend increased, allowing for further control over self‐assembly. To understand the mechanism of this phenomenon, we present a novel field‐based supramolecular model, which describes the formation of copolymer‐additive complexes by reversible hydrogen bonding. The mean‐field phase separation behavior of the model was calculated using the random phase approximation (RPA). The RPA analysis reproduces behavior consistent with an increase of the effective χ in the PDMS‐b‐(PEO/LTA suprablock). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2200–2208  相似文献   

7.
    
Polymer complexes were prepared from high molecular weight poly(acrylic acid) (PAA) and poly(styrene)‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) in dimethyl formamide (DMF). The hydrogen bonding interactions, phase behavior, and morphology of the complexes were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this A‐b‐B/C type block copolymer/homopolymer system, P4VP block of the block copolymer has strong intermolecular interaction with PAA which led to the formation of nanostructured micelles at various PAA concentrations. The pure PS‐b‐P4VP block copolymer showed a cylindrical rodlike morphology. Spherical micelles were observed in the complexes and the size of the micelles increased with increasing PAA concentration. The micelles are composed of hydrogen‐bonded PAA/P4VP core and non‐bonded PS corona. Finally, a model was proposed to explain the microphase morphology of complex based on the experimental results obtained. The selective swelling of the PS‐b‐P4VP block copolymer by PAA resulted in the formation of different micelles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1192–1202, 2009  相似文献   

8.
    
We have demonstrated the preparation of a series of photoaddressable supramolecular block copolymers by mixing a carboxy‐terminated azobenzene derivative, 6‐[4‐(4′‐cyanophenylazo)phenyloxy]hexanoic acid (AZO), and two polystyrene‐b‐poly(4‐vinylpiridine) (PS‐b‐P4VP) block copolymers. AZO can be selectively attached to the P4VP block of PS‐b‐P4VP through hydrogen bonding interactions. The assembly of AZO with vinylpyridine group‐containing polymers was initially investigated on a model system composed of P4VP homopolymer and AZO. Homogeneous liquid crystalline materials were obtained for ratios of AZO to vinylpyridine repeating unit, x, lower or equal to 0.50. Mixtures with higher x resulted in heterogeneous materials showing clear macrophase separation. Accordingly, a series of hydrogen‐bonded complexes of PS‐b‐P4VP and AZO, PS‐b‐P4VP(AZO)x, with x = 0.25 and x = 0.50 were prepared. Lamellar and spherical morphologies were observed for the complexes based on PS24‐b‐P4VP9.5 (Mn,PS = 24,000, Mn,P4VP = 9500) and PS24‐b‐P4VP1.9 (Mn,PS = 24,000, Mn,P4VP = 1900), respectively. Photoinduced orientation of the azobenzene units was obtained in films of P4VP(AZO)x and PS‐b‐P4VP(AZO)x with x = 0.25 and 0.50 by using 488 nm linearly polarized light and characterized through birefringence and dichroism measurements. This investigation shows a versatile and less laborious approach to azobenzene‐containing polymer materials with low chromophore content, of interest in optical application. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
    
This paper describes a new approach towards preparing self‐assembled hydrogen‐bonded complexes that have vesicle and patched spherical structures from two species of block copolymer in non‐selective solvents. The assembly of vesicles from the intermolecular complex formed after mixing polystyrene‐block‐poly(4‐vinyl phenol) (PS‐b‐PVPh) with poly(methyl methacrylate)‐block‐poly(4‐vinylpyridine) (PMMA‐b‐P4VP) in tetrahydrofuran (THF) is driven by strong hydrogen bonding between the complementary binding sites on the PVPh and P4VP blocks. In contrast, well‐defined patched spherical micelles form after blending PS‐b‐PVPh with PMMA‐b‐P4VP in N,N‐dimethylformamide (DMF): weaker hydrogen bonds form between the PVPh and P4VP blocks in DMF, relative to those in THF, which results in the formation of spherical micelles that have compartmentalized coronas that consist of PS and PMMA blocks.

  相似文献   


10.
A branched copolymer containing a degradable polyperoxide linkage at a branching point was synthesized by the radical copolymerization of dienyl‐functionalized polystyrene and polyisoprene macromonomers with molecular oxygen. The ternary mixture of the branched copolymer and the macromonomers showed phase‐separated structure after annealing at 45 and 90 °C. The adjacent spacing of the phase‐separated structure was in the order of submicron to micrometer, which is larger than that of general microphase separated structures, due to the presence of homopolymers (macromonomers). Annealing at 110 °C induced thermal decomposition of the polyperoxide followed by in‐situ collapse and a drastic morphology change in the phase‐separated structure.

  相似文献   


11.
    
We report the synthesis of polystyrene‐block‐poly(dimethyl siloxane) (PS‐b‐PDMS) brush block copolymers (BBCPs) through sequential ROMP of norbornene‐modified macromonomers (‐NB) and explore the effect of side chain length (Nsc) and total backbone degree of polymerization (Nbb) on the self‐assembly of lamellar morphologies. Group I (PS‐NB Mn = 2.9 kg/mol, PDMS‐NB Mn = 4.8 kg/mol) exhibits asymmetric side chains, while Group II (PS‐NB Mn = 4.7 kg/mol, PDMS‐NB Mn = 4.8 kg/mol) possess a more symmetric arrangement. Both families rapidly self‐assemble into well‐ordered lamellar morphologies with domain spacings (d0) ranging from d0 = 54 to 140 nm. The scaling relationship between d0 and Nbb (d0 ~Nbbα) was determined as the measure of backbone flexibility. Exponents of α = 0.71 and α = 0.81 are observed for Groups I and II, respectively, indicating the BBCPs adopt an extended backbone conformation. The presence of a low Tg side chain such as PDMS increases apparent flexibility of the backbone. The interplay between contrasting characteristics of the side chains is discussed and reveals the importance of understanding the physical consequences of block architecture on controlling BBCP assembly. These findings provide necessary information for future investigations of complex phases and well‐defined nanostructures fabricated using the brush architecture. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 691–699  相似文献   

12.
    
This article reports thermoset blends of bisphenol A‐type epoxy resin (ER) and two amphiphilic four‐arm star‐shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4′‐Methylenedianiline (MDA) was used as a curing agent. The first star‐shaped diblock copolymer with 70 wt % ethylene oxide (EO), denoted as (PPO‐PEO)4, consists of four PPO‐PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt % EO, denoted as (PEO‐PPO)4, contains four PEO‐PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small‐angle X‐ray scattering. It was found that the MDA‐cured ER/(PPO‐PEO)4 blends are not macroscopically phase‐separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO‐PEO)4 blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO‐PEO)4 blends show composition‐dependent nanostructures on the order of 10?30 nm. The 80/20 ER/(PPO‐PEO)4 blend displays spherical PPO micelles uniformly dispersed in a continuous ER‐rich matrix. The 60/40 ER/(PPO‐PEO)4 blend displays a combined morphology of worm‐like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA‐cured ER/(PEO‐PPO)4 blends. The MDA‐cured ER/(PEO‐PPO)4 blends with (PEO‐PPO)4 content up to 50 wt % exhibit phase‐separated structures on the order of 0.5–1 μm. This can be considered to be due to the different EO content and block sequence of the (PEO‐PPO)4 copolymer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 975–985, 2006  相似文献   

13.
    
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   

14.
    
Two well‐defined diblock copolymers with quadruple hydrogen‐bonding groups on one block, denoted PSUEA‐1 and PSUEA‐2 , have been synthesized, and novel snowflake‐shaped nanometer‐scale aggregates, self‐assembled by such diblock copolymers in non‐polar solvents, have been observed. The micellar dimensions were investigated by DLLS and SLLS. Their morphologies were studied by TEM. Since the degrees of polymerization of the Upy‐containing blocks of PSUEA‐1 and PSUEA‐2 are quite similar and the polystyrene block of the PSUEA‐1 is longer than that of the PSUEA‐2 , a subtle but identifiable difference between the sizes and structures of the PSUEA‐1 and PSUEA‐2 aggregates was noticed and characterized.

  相似文献   


15.
    
A simple and effective airflow method to prepare sandwich‐type block copolymer films is reported. The films are composed of three layers: vertically oriented nanocylinders align in both upper and bottom layers and irregular nanocylinders exist in the bulk of the film. The vertically oriented nanocylinders in both sides can provide high accessibility to ions and ensures the exchange of chemical species between the membrane and external environment, while the irregularly oriented nanocylinders in the middle part of the film can prolong the pathway of ions transportation and enhance ions selectivity.

  相似文献   


16.
Liquid crystalline triblock copolymers with LC inner block and amorphous outer blocks have been synthesized by “living” anionic polymerization and investigated using DSC, TEM, and small-angle x-ray diffraction. All samples of poly[styrene-block-2-(3-cholesteryloxycarbonyloxy) ethyl methacrylate-block-styrene] (PS-b-PChEMA-b-PS) show liquid crystalline behavior and phase separation between the blocks. Compared to triblock copolymers with PS inner block (PChEMA-b-PS-b-PChEMA) and diblock copolymers (PS-b-PChEMA) the LC block copolymers with PS outer blocks have the same properties. The LC behavior and the morphology do not depend on the block arrangement; they are only influenced by the volume fractions of the blocks. Those samples in which the liquid crystalline subphase is not continuous (spheres) only a nematic phase was found, whereas in all samples with a continuous liquid crystalline subphase, the smectic A phase of the homopolymer was observed. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
    
Summary: Here, we have described a novel supramolecular complex (SMC) between poly(styrene)-b-poly(4-vinylpyridine) (PS-b-P4VP) and 1-pyrenebutyric acid (PBA) and studied of its self assembly in thin film. PBA will make supramolecular complex with the P4VP block due to strong hydrogen bonding between the carboxylic group of 1-pyrenebutyric acid and pyridine ring of P4VP. The formation of supramolecular complex between PS-P4VP and PBA through hydrogen bonding is investigated through FTIR study. The supramolecular complex of PS-b-P4VP and 1-pyrenebutyric acid changed the block copolymer morphology from cylindrical to lamella in thin film due to the increase of the volume fraction of P4VP (PBA). In both cases (parent block copolymer and SMC), the microdomains are oriented normal to the substrate after annealing in a selective solvent. Pure block copolymer shows cylindrical morphology with a periodicity of ∼26 nm, whereas the SMC shows lamellar morphology with a periodicity of ∼ 29 nm. After fabricating the thin film from SMC, 1-pyrenebutyric acid can be easily removed by dissolving the thin film in ethanol to transform the block copolymer thin film into nanotemplate or membrane.  相似文献   

18.
    
This paper describes the miscibility and self‐assembly, mediated by hydrogen‐bonding interactions, of new block copolymer/nanoparticle blends. The morphologies adopted by the immiscible poly[(ε‐caprolactone)‐block‐(4‐vinyl pyridine)] (PCL‐b‐P4VP) diblock copolymer changes upon increasing the number of competitive hydrogen‐bonding interactions after adding increasing amounts of octaphenol polyhedral oligomeric silsesquioxane (OP‐POSS). Transmission electron microscopy reveals morphologies that exhibit high degrees of long‐range order, such as cylindrical and spherical structures, at relatively low OP‐POSS contents, and short‐range order or disordered structures at higher OP‐POSS contents. Analyses performed using differential scanning calorimetry, wide‐angle X‐ray diffraction, and FT‐IR spectroscopy provide positive evidence that the pyridyl units of the P4VP block are significantly stronger hydrogen‐bond acceptors toward the OH group of OP‐POSS than are the CO groups of the PCL block, thereby resulting in excluded and confined PCL phases.

  相似文献   


19.
    
While network‐like assemblies are formed by amphiphilic polyphosphazenes with poly(N‐isopropylacrylamide) and ethyl tryptophan as side groups in aqueous solution, a significant morphology transformation is observed when small molecules that exhibit hydrogen‐bonding interactions with amphiphilic copolymers are introduced during the preparation of polymeric assemblies through a dialysis procedure. Depending on copolymer composition and the content of small molecules introduced, aggregates ranging from general vesicles, high‐genus vesicles, to well‐defined nanospheres can be prepared successfully as clearly evidenced by TEM observation, which suggests this procedure should be a novel approach to prepare composite vesicles.

  相似文献   


20.
    
We report an approach to control the pore characteristics of hierarchically porous polymers (HPPs) containing micropores in a well‐defined 3D continuous mesoporous framework, by the hyper‐crosslinking reaction of a crosslinked block polymer precursor polylactide‐b‐poly(vinylbenzyl chloride‐co‐styrene‐co‐divinylbenzene) (PLA‐b‐P(VBzCl‐co‐S‐co‐DVB)) consisting of bicontinuous PLA and P(VBzCl‐co‐S‐co‐DVB) microdomains. We investigated the hyper‐crosslinking reaction of P(VBzCl‐co‐S‐co‐DVB)s synthesized by reversible addition‐fragmentation chain transfer (RAFT) copolymerization, and then examined the effect of VBzCl, S, DVB, and polylactide macrochain transfer agent (PLA‐CTA) contents in the polymerization mixture on the pore characteristics of the HPPs. We demonstrate that while the VBzCl content responsible for the hyper‐crosslinking reaction primarily governs microporosity, the DVB content has a strong influence on the mesopore structure, as it determines the onset of the gelation of the polymerization mixture, which arrests the emerging disordered bicontinuous morphology induced by the polymerization‐induced microphase separation process. Because the PLA microdomains template the percolating mesoporous space, mesoporosity was mainly controlled by the PLA‐CTA contents. The synergistic combination of hyper‐crosslinking and block polymer self‐assembly in the HPP formation provided a highly reinforced mesoporous framework, stable against pore collapse, and interconnected mesopores. These facilitated diffusion to the microporous surfaces, suggesting its utility for advanced absorbents and catalytic supports. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 900–913  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号