首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 3‐miktoarm star‐shaped ABC copolymers of polystyrene–poly(ethylene oxide)–poly(ethoxyethyl glycidyl ether) (PS‐PEO‐PEEGE) and polystyrene–poly(ethylene oxide)–polyglycidol (PS‐PEO‐PG) with low polydispersity indices (PDI ≤ 1.12) and controlled molecular weight were synthesized by a combination of anionic polymerization with ring‐opening polymerization. The polystyryl lithium (PSLi+) was capped by EEGE firstly to form the functionalized polystyrene (PSA) with both an active ω‐hydroxyl group and an ω′‐ethoxyethyl‐protected hydroxyl group, and then the PS‐b‐PEO block copolymers, star(PS‐PEO‐PEEGE) and star(PS‐PEO‐PG) copolymers were obtained by the ring‐opening polymerization of EO and EEGE respectively via the variation of the functional end group, and then the hydrolysis of the ethoxyethyl group on the PEEGE arm. The obtained star copolymers and intermediates were characterized by 1H NMR spectroscopy and SEC.

  相似文献   


2.
The anionic polymerization of ethoxyethyl glycidyl ether (EEGE) initiated by cesium alkoxide was studied. The ring-opening polymerization of EEGE in the presence of cesium alkoxide of 1-methoxy-2-ethanol does not involve any side reactions. The presence of an additional alcohol leads to a significant increase of the initiator efficiency. Aqueous solutions of poly (ethoxyethyl glycidyl ether) (PEEGE) exhibit lower critical solution temperature (LCST), and the polymer solubility in water is extremely sensitive to its MW. Two novel types of block copolymers based on PEEGE were synthesized: triblock-copolymers of ABA (A′:BA′) structure, where A is the PEEGE block, A′ polyglycidol (PG) and B the polypropylene oxide (PPO) block, and A2S (A′2S) and A4S (A′4S) heteroarm stars, where S is the polystyrene block. The synthesis of the ABA block was performed by polymerization of EEGE initiated by bi-functional PPO/Cesium alkoxide macroinitiator. The PEEGE blocks were converted into PG blocks by successful cleavage of the ethoxyethyl group. Polystyrene/PEEGE and polystyrene/PG three- and five- heteroarm star copolymers were synthesized by a coupling reaction between well-defined chain-end-functionalized polystyrenes carying dendritic benzyl bromide moieties with living anionic polymers of PEEGE with one cesium alkoxide terminal group. The coupling reaction proceeds quantitatively without any side reactions, and thus series of star-branched polymers can be systematically synthesized. Polystyrenes with two or four PG arms have been obtained after the cleavage of the protecting group. The compact structure of these multi-arm star polymers and their amphiphilic character leads to the formation of nanoparticles in aqueous solution with rather uniform size distribution and a mean diameter of 15 nm.  相似文献   

3.
A well‐defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well‐defined polymer poly(ethylene oxide‐co‐2,3‐epoxypropyl‐1‐ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide‐co‐glycidol) [poly(EO‐co‐Gly)]} with multiple pending hydroxymethyl groups was esterified with 2‐bromoisobutyryl bromide to produce the macro‐ATRP initiator [poly(EO‐co‐Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361–4371, 2006  相似文献   

4.
以原子转移自由基偶联法合成了多臂星形聚合物S-PEO和星形杂臂共聚物PEO-PS。以傅立叶红外光谱(FT-IR)和核磁共振(1H NMR)分析方法确定了产物的结构。以GPC分析测试了产物的分子量和分子量分布。GPC分析结果表明所得聚合物分子量增大,分子量分布窄,偶联反应效率可高达99%以上。  相似文献   

5.
Janus‐type dendrimer‐like poly(ethylene oxide)s (PEOs) of 1st, 2nd, and 3rd generation carrying terminal hydroxyl functions on one side and cleavable ketal groups on the other were used as substrates to conjugate folic acid as a folate receptor and camptothecin (CPT) as a therapeutic drug in a sequential fashion. The conjugation of both FA and CPT was accomplished by “click chemistry” based on the 1,3 dipolar cycloaddition coupling reaction. First, the hydroxyl functions present at one face of Janus‐type dendrimer‐like PEOs were transformed into alkyne groups through a simple Williamson‐type etherification reaction. Next, the ketals carried by the other face of the dendrimer‐like PEOs were hydrolyzed, yielding twice as many hydroxyls which were subsequently subjected to an esterification reaction using 2‐bromopropionic bromide. Before substituting azides for the bromide of 2‐bromopropionate esters just generated in the presence of NaN3, an azido‐containing amidified FA derivative was reacted through click chemistry with alkyne functions introduced on the other face of the dendrimer‐like PEOs. A purposely designed alkyne‐functionalized biomolecule derived from CPT was conjugated to the azido functions carried by the dendritic PEOs by a second “click reaction.” In this case, twice as many CPT as FA moieties were finally conjugated to the two faces of the Janus‐type dendrimer‐like PEOs, the numbers of folate and CPT introduced being 2 and 4, 4 and 8, and 8 and 16 for samples of 1st, 2nd, and 3rd generation, respectively (route A). An alternate route for functionalizing the dendrimer‐like PEO of 1st generation consisted, first, in conjugating the azido‐containing CPT onto the alkyne groups present on one face of the dendritic PEO scaffold. The alkyne‐functionalized FA was further introduced by click chemistry after the bromides of 2‐bromopropionate esters were chemically transformed into azido groups. The corresponding prodrug thus contains 2 CPT and 4 FA external moieties (route B). Every reaction step product was thoroughly characterized by 1H NMR spectroscopy. A preliminary investigation into the water solution properties of these functionalized dendritic PEOs is also presented. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
We report a simple preparation of three‐armed (A3‐type) star polymers based on the arm‐first technique, using a click‐reaction strategy between a well‐defined azide‐end‐functionalized polystyrene, poly(tert‐butyl acrylate), or poly(ethylene glycol) precursor and a trisalkyne‐functional initiator, 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]ethane. The click‐reaction efficiency for A3‐type star formation has been investigated with gel permeation chromatography measurements (refractive‐index detector). The gel permeation chromatography curves have been split with the deconvolution method (Gaussian area), and the efficiency of A3‐type star formation has been found to be 87%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6458–6465, 2006  相似文献   

7.
Memory effects of several copolymers of poly(ethylene oxide) (PEO) and poly(ethylene terephthalate) (PET) were illustrated with photos, determined with shrinkage experiments and characterized by the recovery of samples to their original figures. Copolymers of appropriate composition could undertake an approximately full recovery which is tightly related to the annealing temperature at which shrinkage of samples occurs to some extent. Melting and recrystallization of PEO segments may be responsible for the memory effect. The memory properties of samples almost kept unchanged after many fatigue cycles (e.g. 15–20 cycles), which could make these copolymers useful in practical applications as novel shape memory materials. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
An amphiphilic multiblock copolymer [poly(ethylene oxide)‐b‐polystyrene]n [(PEO‐b‐PS)n] is synthesized by using trithiocarbonate‐embedded PEO as macro‐RAFT agent. PEO with four inserted trithiocarbonate (Mn = 9200 and Mw/Mn = 1.62) groups is prepared first by condensation of α, ω‐dihydroxyl poly(ethylene oxide) with S, S′‐Bis(α, α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDATC) in the presence of pyridine, then a series of goal copolymers with different St units (varied from 25 to 218 per segment) are obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The synthesis process is monitored by size exclusion chromatography (SEC), 1H NMR and FT‐IR. The self‐assembled morphologies of the copolymers are strongly dependent of the length of PS block chains when the chain length of PEO is fixed, some new morphologies as large leaf‐like aggregates (LLAs), large octopus‐like aggregates (LOAs), and coarse‐grain like micelles (CGMs) are observed besides some familiar aggregates as large compound vesicles (LCVs), lamellae and rods, and the effect of water content on the morphologies is also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6071–6082, 2006  相似文献   

9.
Furfuryl glycidyl ether (FGE) represents a highly versatile monomer for the preparation of reversibly cross‐linkable nanostructured materials via Diels–Alder reactions. Here, the use of FGE for the mid‐chain functionalization of a P2VP‐b‐PEO diblock copolymer is reported. The material features one furan moiety at the block junction, P2VP68‐FGE‐b‐PEO390, which can be subsequently addressed in Diels–Alder reactions using maleimide‐functionalized counterparts. The presence of the FGE moiety enables the introduction of dyes as model labels or the formation of hetero‐grafted brushes as shell on hybrid Au@Polymer nanoparticles. This renders P2VP68‐FGE‐b‐PEO390, a powerful tool for selective functionalization reactions, including the modification of surfaces.

  相似文献   


10.
The amphiphilic A2B star‐shaped copolymers of polystyrene‐b‐[poly(ethylene oxide)]2 (PS‐b‐PEO2) were synthesized via the combination of atom transfer nitroxide radical coupling (ATNRC) with ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP) mechanisms. First, a novel V‐shaped 2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐PEO2 (TEMPO‐PEO2) with a TEMPO group at middle chain was obtained by ROP of ethylene oxdie monomers using 4‐(2,3‐dihydroxypropoxy)‐TEMPO and diphenylmethyl potassium as coinitiator. Then, the linear PS with a bromine end group (PS‐Br) was obtained by ATRP of styrene monomers using ethyl 2‐bromoisobutyrate as initiator. Finally, the copolymers of PS‐b‐PEO2 were obtained by ATNRC between the TEMPO and bromide groups on TEMPO‐PEO2 and PS‐Br, respectively. The structures of target copolymers and their precursors were all well‐defined by gel permeation chromatographic and nuclear magnetic resonance (1H NMR). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.

Star‐shaped poly(ethylene oxide) (PEO) was prepared by atom transfer radical polymerization (ATRP) with a 2‐bromoisobutyryl PEO ester as a macroinitiator. Divinylbenzene (DVB) and ethylene glycol dimethacrylate were employed as the coupling reagents. Several factors pertinent to star polymer formation are: type of coupling reagents and solvents, feed ratio of DVB to the macroinitiator, and reaction time. These were studied and used to optimize the star formation process. The optimum yield of star polymer was ca. 90–98%.  相似文献   

12.
Summary: Star‐shaped hydroxy‐terminated poly(ε‐caprolactone)s (ssPCL), with arms of different lengths, were obtained by ring‐opening polymerization (ROP) of ε‐caprolactone initiated by pentaerythritol, and were condensed with α‐methyl‐ω‐(3‐carboxypropionyloxy)‐poly(ethylene oxide)s ( = 550–5 000) to afford four‐armed PCL‐PEO star diblock copolymers (ssPCL‐PEO). The polymers were characterized by 1H and 13C NMR spectroscopy and size‐exclusion chromatography (SEC). The melting behavior of ssPCLs was studied by differential scanning calorimetry (DSC). X‐ray diffraction and DSC techniques were used to investigate the crystalline phases of ssPCL‐PEOs.

The part of the synthesis of four‐armed star‐shaped diblock poly(ε‐caprolactone)‐poly(ethylene oxide) copolymers as described.  相似文献   


13.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

14.
The eight‐shaped poly(ethylene oxide) (PEO) is synthesized by a combination of Glaser coupling with ring‐opening polymerization (ROP). Firstly, the star‐shaped (PEO‐OH) 4 is synthesized by ROP of ethylene oxide (EO) using pentaerythritol as an initiator and diphenylmethyl potassium (DPMK) as a deprotonated agent, and then the alkyne group is introduced onto the PEO arm‐end to give (PEO‐Alkyne) 4 in a NaH/tetrahydrofuran (THF) system. The intramolecular cyclization is carried out by a Glaser coupling reaction in a pyridine/CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) system at room temperature in an air atmosphere, and eight‐shaped PEO was formed with high efficiency (almost 100%). The target polymers and intermediates were well characterized by SEC, MALDI‐TOF MS, 1H NMR and FT‐IR in detail.

  相似文献   


15.
Poly(ethylene oxide) (PEO) star polymer with a microgel core was prepared by atom transfer radical poylmerization (ATRP) of divinyl benzene (DVB) with mono‐2‐bromoisobutyryl PEO ester as a macroinitiator. Several factors, such as the feed ratio of DVB to the initiator, type of catalysts, and purity of DVB, play important roles during star formation. The crosslinked poly(divinyl benzene) (PDVB) core was further obtained by the hydrolysis of PEO star to remove PEO arms. Size exclusion chromatography (SEC) traces revealed the bare core has a broad molecular weight distribution. PEO–polystyrene (PS) heteroarm star polymer was synthesized through grafting PS from the core of PEO star by another ATRP of styrene (St) because of the presence of initiating groups in the core inherited from PEO star. Characterizations by SEC, 1H NMR, and DSC revealed the successful preparation of the target star copolymers. Scanning electron microscopy images suggested that PEO–PS heteroarm star can form spherical micelles in water/tetrahydrofuran mixture solvents, which further demonstrated the amphiphilic nature of the star polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2263–2271, 2004  相似文献   

16.
Summary: Polystyrene‐block‐poly(ethylene oxide) (SEO) block copolymer thin films, in which CdS clusters have been sequestered into the PEO domains of the SEO block copolymers, are found to induce the morphological transformation of PEO from cylinders to spheres, as shown by using atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). This transformation is caused by the presence of hydrogen‐bonding interactions between surface‐hydroxylated CdS and PEO, as confirmed by nuclear magnetic resonance (NMR) studies.

Morphological transformation of PEO cylinders into CdS/PEO spheres by hydrogen‐bonding interactions between surface‐hydroxylated CdS and PEO.  相似文献   


17.
Degradable dendrimer‐like PEOs were designed using an original ABC‐type branching agent featuring a cleavable ketal group, following an iterative divergent approach based on the anionic ring opening polymerization (AROP) of ethylene oxide and arborization of PEO chain ends. A seventh generation dendrimer‐like PEO carrying 192 peripheral hydroxyls and exhibiting a molar mass of 446 kg · mol−1 was obtained in this way. The chemical degradation of these dendritic scaffolds was next successfully accomplished under acidic conditions, forming linear PEO chains of low molar mass (≈2 kg · mol−1), as monitored by 1H NMR, SEC, and MALDI‐TOF mass spectrometry as well as by AFM.

  相似文献   


18.
Biodegradable star‐shaped poly(ethylene glycol)‐block‐poly(lactide) copolymers were synthesized by ring‐opening polymerization of lactide, using star poly(ethylene glycol) as an initiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature. Two series of three‐ and four‐armed PEG‐PLA copolymers were synthesized and characterized by gel permeation chromatography (GPC) as well as 1H and 13C NMR spectroscopy. The polymerization under the used conditions is very fast, yielding copolymers of controlled molecular weight and tailored molecular architecture. The chemical structure of the copolymers investigated by 1H and 13C NMR indicates the formation of block copolymers. The monomodal profile of molecular weight distribution by GPC provided further evidence of controlled and defined star‐shaped copolymers as well as the absence of cyclic oligomeric species. The effects of copolymer composition and lactide stereochemistry on the physical properties were investigated by GPC and differential scanning calorimetry. For the same PLA chain length, the materials obtained in the case of linear copolymers are more viscous, whereas in the case of star copolymer, solid materials are obtained with reduction in their Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3966–3974, 2007  相似文献   

19.
Well‐defined diblock copolymers, poly(ethylene glycol)‐block‐poly(glycidyl methacrylate)s (PEG‐b‐PGMAs), with different poly(glycidyl methacrylate) (PGMA) chains, were prepared via atom transfer radical polymerization (ATRP) from the same macromolecular initiator 2‐bromoisobutyryl‐terminated poly(ethylene glycol) (PEG). Ethyldiamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and polyethyleneimine (PEI) with an of 400 (PEI400) were used to decorate PEG‐b‐PGMAs to get the cationic polymers PEG‐b‐PGMA‐ oligoamines. These cationic polymers possessed high buffer capability and could condense plasmid DNA (pDNA) into nanoscaled complexes of 125–530 nm. These complexes showed the positive zeta potential of 20–35 mV at N/P ratios of 10–50. Most of them exhibited very low cytotoxicity and good transfection efficiency in 293T cells. The presence of the serum medium did not decrease the transfection efficiency due to the steric stabilization of the PEG chains.

  相似文献   


20.
Poly(ethylene terephthalate‐co‐5‐nitroisophthalate) copolymers, abbreviated as PETNI, were synthesized via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate and bis(2‐hydroxyethyl) 5‐nitroisophthalate mixtures with molar ratios of these two comonomers varying from 95/5 to 50/50. Polymerization reactions were carried out at temperatures between 200 and 270 °C in the presence of tetrabutyl titanate as a catalyst. The copolyesters were characterized by solution viscosity, GPC, FTIR, and NMR spectroscopy. They were found to be random copolymers and to have a comonomer composition in accordance with that used in the corresponding feed. The copolyesters became less crystalline and showed a steady decay in the melting temperature as the content in 5‐nitroisophthalic units increased. They all showed glass‐transition temperatures superior to that of PET with the maximum value at 85 °C being observed for the 50/50 composition. PETNI copolyesters appeared stable up to 300 °C and thermal degradation was found to occur in two well‐differentiated steps. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1934–1942, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号