首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Carbocations are key intermediates in many important organic reactions. The remarkable effect of the solvent composition on the kinetic parameters of the carbocation decay and product composition was found in the photolysis of 1,2,2,3‐tetramethyl‐1,2‐dihydroquinoline ( 1 ) in 2,2,2‐trifluoroethanol (TFE)–H2O mixtures. The rate constant of the intermediate carbocation decay has a maximum, and the activation energy is minimal in the TFE–H2O mixture 3 : 7 (v/v). In the steady‐state photolysis, products of oligomerization of 1 with n up to 8 and their adducts with TFE and H2O were identified at this solvent composition. The results were rationalized in terms of TFE clustering in aqueous mixtures, with the maximum of cluster formation at 30 vol % TFE. The clusters form a pseudo‐phase, in which the molecules of 1 are concentrated and the carbocations are generated. TFE, H2O and 1 compete in the combination reaction with the photogenerated carbocation to afford the products. This effect was not observed for 1,2,2,4‐tetramethyl‐1,2‐dihydroquinoline ( 2 ), the isomer of 1 , due to steric hindrance at C(4) carbon atom of the heterocycle, the active site of the intermediate carbocation, which makes impossible for the carbocation from 2 to react further with 2 . Thus, the kinetic parameters and the product composition in the photolysis of 1 in TFE–H2O mixtures reflect the changes in the microstructure of the binary solvent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A series of nitrophenyl β‐cyclodextrin derivatives: mono[6‐deoxy‐6‐(4‐nitrobenzamido)]‐per‐ O‐methyl‐β‐cyclodextrin (R1? Ph? NO2), mono[6‐deoxy‐6‐(3‐nitrobenzamido)]‐per‐O‐methyl‐β‐cyclodextrin (R2? Ph? NO2) and heptakis[6‐deoxy‐6‐(4‐nitrobenzamido)‐2,3‐di‐O‐methyl]‐β‐cyclodextrin [R3? (Ph? NO2)7] were synthesized. Purity and composition of the obtained substances were checked. Electroreduction of nitro groups of the new synthesized compounds was investigated on mercury electrode using cyclic voltammetry and chronocoulometry. The parameters of the reduction processes of ? NO2 groups of the investigated compounds were found not to be comparable to the reduction of nitrobenzene under the same experimental conditions. Moreover, the electroreduction of nitro groups in these nitrophenyl derivatives was dependent on pH, the type of the studied compound, and slightly on the solvent composition. All the reactants were strongly adsorbed on mercury electrode. In the case of R3? (Ph? NO2)7, its seven nitro groups were reduced practically at the same potential, and no radical anion formation was observed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
X‐ray diffraction (XRD) studies have shown that 2‐piperidyl‐5‐nitro‐6‐methylpyridine, C11H15N3O2, undergoes a structural phase transition at T = 240 K. The room temperature structure is tetragonal, space group I41/a, with the unit‐cell dimensions a = 13.993(2) and c = 23.585(5) Å. The pyridine ring takes trans conformation with respect to the piperidine unit. While pyridine is well ordered, the piperidine moiety shows apparent disorder resulting from a libration about the linking N C bond. The low‐temperature phase is monoclinic, space group I2/a. Contraction of the unit‐cell volume by 2.3% at 170 K enables the C H···O linkage between the molecules of the neighbouring stacks. As result, the asymmetric unit becomes bi‐molecular. The thermal librations of the piperidine and methyl groups become considerably reduced at 170 K and nearly fully reduced at about 100 K. The IR spectra and polarised Raman spectra agree with the X‐ray structure and confirm the disorder effect on the piperidine ring. The assignment of the bands observed was made on the basis of DFT chemical quantum calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The kinetics of hydrolysis of 1,8‐N‐butyl‐naphthalimide (1,8‐NBN) to 1,8‐N‐butyl‐naphthalamide (1,8‐NBAmide) and of 2,3‐N‐butyl‐naphthalimide (2,3‐NBN) to 2,3‐N‐butyl‐naphthalamide (2,3‐NBAmide), as well as the formation of the respective anhydrides from the amides were investigated in a wide acidity range. 1,8‐NBN equilibrates with 1,8‐NBAmide in mild alkali. Under the same conditions 2,3‐NBN quantitatively yields 2,3‐NBAmide. Over a wide range of acidities the reactions of the 1,8‐ and 2,3‐N‐butyl‐naphthalamides (or imides) yield similar products but with widely different rates and at distinct pH's. Anhydride formation in acid was demonstrated for 1,8‐NBAmide. The reactions mechanisms were rationalized in the manifold pathways of ab initio calculations. The differences in rates and pH ranges in the reactions of the 1,8‐ and 2,3‐N‐butyl‐naphthalamides were attributed to differences in the stability of the tetrahedral intermediates in alkali as well as the relative stabilities of the five and six‐membered ring intermediates. The rate of carboxylic acid assisted 1,8‐N‐Butyl‐naphthalamide hydrolysis is one of the largest described for amide hydrolysis models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
IR and Raman spectra (RS) of polycrystalline 3‐(or 4 or 6)‐methyl‐5‐nitro‐2‐pyridinethione have been measured and analyzed by means of density functional theory (DFT) quantum chemical calculations. The B3LYP/6‐311G(2d,2p) approach has been applied for both the thiol and thione tautomers due to the possibility of the formation of these two thiole forms. Molecular structures of these compounds have been optimized starting from different molecular geometries of the thiol group and thione group. Two conformations of the 2‐mercaptopyridine, trans and cis, have been taken into account. It was shown that the studied compounds appear in the solid state in the thione form. The effect of the hydrogen‐bond formation in the studied compounds has been considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
By means of Raman spectroscopy coupled with density functional theory (DFT) calculations and perturbation correlation moving window two‐dimensional correlation spectroscopy intermolecular interactions were assessed in mixtures of ionic liquid (IL) 1‐n‐butyl‐3‐methylimidazolium hexafluorophosphate (BmimPF6) with polar aprotic solvent γ‐butyrolactone (γ‐BL) over the entire range of compositions. The symmetrical P―F stretching vibration of the IL anion was found to be insensitive to the changes in mixture concentration in contrast to the CO stretching vibration of the γ‐BL and the imidazolium ring C―H stretching vibrations of the IL cation. Each of these vibrational profiles was decomposed in various spectral contributions, and their number was rationalized by the results of quantum‐chemical calculations and/or previous controversial published data. Progressive redshift of the ring C―H stretching wavenumbers was referred to pronounced solvation of the cation at the imidazolium ring site accompanied with H‐bond formation. This was especially pronounced at IL mole fraction less than 0.18. Complicated variations in the intensities of the individual contributions of the CO profile were treated as a manifestation of the changing with concentration pattern of the intermolecular interactions. The self‐association of γ‐BL molecules and distinct cation solvation as dominant intermolecular interactions at low IL content are replaced with weaker cation solvation and ion association at high concentrations of IL. Possible representative molecular structures were proposed on the basis of DFT calculations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the intermolecular hydrogen‐abstraction reaction of the triplet state of 4‐benzoylpyridine (4‐BPy) in 2‐propanol solvent is reported. The TR3 results reveal a rapid hydrogen abstraction (<10 ns) by the 4‐BPy triplet state (nπ*) with the 2‐propanol solvent, leading to formation of a 4‐BPy ketyl radical and an associated dimethyl ketyl radical partner from the solvent. The recombination of these two radical species occurs with a time constant about 200 ns to produce a para‐N‐LAT (light absorbing transient). The structure, major spectral features, and identification of the ketyl radical and the para‐N‐LAT coupling complex have been determined and confirmed by comparison of the TR3 results with results from density functional theory (DFT) calculations. A reaction pathway for the photolysis of 4‐BPy in 2‐propanol deduced from the TR3 results is also presented. The electron‐withdrawing effect of the heterocyclic nitrogen for 4‐BPy on the triplet state makes it have a significantly higher chemical reactivity for the hydrogen abstraction with 2‐propanol compared to the previously reported corresponding benzophenone triplet reaction under similar reaction conditions. In addition, the 4‐BPy ketyl radical reacts with the dimethyl ketyl radical to attach at the para‐N atom position of the pyridine ring to form a cross‐coupling product such as 2‐[4‐(hydroxy‐phenyl‐methylene)‐4h‐pyridin‐1‐yl]‐propan‐2‐ol instead of attacking at the para‐C atom position as was observed for the corresponding benzophenone reaction reported in an earlier study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
3‐Methyl‐2(1H)‐quinoxalinone and three derivatives (3,7‐dimethyl‐2(1H)‐quinoxalinone, 3‐methyl‐6,7‐dichloro‐2(1H)‐quinoxalinone and 3‐methyl‐7‐nitro‐2(1H)‐quinoxalinone) have been synthesised and analysed by 1H NMR and IR spectral spectroscopies. The crystal structures have been determined at room temperature from X‐ray single crystal diffraction data for three of them and from powder diffraction data for the nitro derivative. 3‐Methyl‐2(1H)‐quinoxalinone crystallises in the P21/c monoclinic system, 3,7‐dimethyl‐2(1H)‐quinoxalinone in the Pbca orthorhombic system and the two others compounds in the P$\overline {1} $ triclinic system. For the nitro derivative, C? H$\cdots $ N short contacts are established between the carbon of the methyl and the double bounded nitrogen of the ring. For the three other compounds N? H$\cdots $ O hydrogen bonds involve the atoms of the heterocyclic ring. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The structures of 2‐substituted malonamides, YCH(CONR1R2)CONR3R4 (Y = Br, SO2Me, CONH2, COMe, and NO2) were investigated. When Y = Br, R1R2 = R3R4 = HEt; Y = SO2Me, R1–R4 = H and for Y = CONH2 or CONHPh, R1–R4 = Me, the structure in solution is that of the amide tautomer. X‐ray crystallography shows solid‐state amide structures for Y = SO2Me or CONH2, R1–R4 = H. Nitromalonamide displays an enol structure in the solid state with a strong hydrogen bond (OO distance = 2.3730 Å at 100 K) and d(OH) ≠ d(OH). An apparently symmetric enol was observed in solution, even in appreciable percentages in highly polar solvents such as DMSO‐d6, but Kenol values decrease on increasing the solvent polarity. The N,N′‐dimethyl derivative is less enolic. Acetylmalonamides display a mixture of enol on the acetyl group and amide in non‐polar solvents, and only the amide in DMSO‐d6. DFT calculations gave the following order of pKenol values for Y: H > CONH2 > COMe ≥ COMe (on acetyl) ≥ MeSO2 > CN > NO2 in the gas phase, CHCl3, and DMSO. The enol on the C?O group is preferred to the aci‐nitro compound, and the N? O? HO?C is less favored than the C?O? HO?C hydrogen bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
FTIR and FT Raman spectra of 2‐bromo‐4‐chloro phenol (BCP) and 2‐chloro‐4‐nitro phenol (CNP) were recorded in the region 4000–400 and 4000–50 cm−1, respectively. The molecular structure, geometry optimization, and vibrational wavenumbers were investigated. The spectra were interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) using the standard B3LYP/6‐31G** method and basis set combination and was scaled using multiple scale factors, which yield good agreement between the observed and calculated wavenumbers. The results of the calculations are applied to simulate the infrared and Raman spectra of the title compounds, which showed excellent agreement with the observed spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Reactions of 2‐nitro‐, 4‐nitro‐ and 2,4‐dinitrophenylglycidyl ethers with bicyclo[2.2.1]hept‐5‐ene‐endo‐2‐ylmethylamine in isopropanol have been studied. The mixtures of products were chromatographed on silica gel and eluted with ether or ether/2‐propanol (1:1), the structures of individual products have been confirmed by IR spectra, NMR 1H, 13C spectra, using experiments that involve homonuclear and heteronuclear scalar coupling interactions (COSY, TOCSY, HMQC, HMBC), and mass spectrometry. Amino alcohols as the major products of regioselective aminolysis of epoxides (according to the Krasusky rule) have been obtained. The minor products were the compounds with two hydroxyalkyl fragments at the nitrogen atom. In case of dinitrophenylglycidyl ether, it was the minor product of aryl nucleophilic substitution (SNAr). The abnormal course of aminolysis has been confirmed by the results of quantum‐chemical calculations of activation barries and Free Gibbs energies of the competitive reactions of epoxides (at the B3LYP/6‐311 + G(d,p) level of theory). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Imidazolium ionic liquids (IMILs) with a piperidine moiety appended via variable length methylene spacers (with n = 1–4) were studied computationally to assess their potential to act as internal base for N‐heterocyclic carbene (NHC) generation. Proton transfer energies computed by B3LYP/6‐311+G(2d,p) were least endothermic for the basic‐IL with n = 3, whose optimized structure showed the shortest C2‐H‐‐‐‐N(piperidine) distance. Inclusion of counter anion (Cl or NTf2) caused dramatic conformational changes to enable close contact between the acidic C2‐H and the anions. To examine the prospect for internal C2‐H‐‐‐‐N coordination, multinuclear NMR data (1H, 15N, and 13C) were computed by gauge independent atomic orbitals–density functional theory (GIAO‐DFT) in the gas phase and in several solvents by the PCM method for comparison with the experimental NMR data for the basic ILs (with n = 2–4) synthesized in the laboratory. These studies indicate that interactions with solvent and counter ion are dominant forces that could disrupt internal C2‐H‐‐‐‐N coordination/proton transfer, making carbene generation from these basic‐ILs unlikely without an added external base. Therefore, the piperidine‐appended IMILs appear suitable for application as dual solvent/base in organic/organometallic transformations that require the use of mild base, without the necessity to alkylate at C‐2 to prevent N‐heterocyclic carbene formation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The nitration reaction of 5,10,15,20‐tetranaphthylporphyrin (TNP) was investigated in detail and the mono‐, di‐, and tri‐nitro‐TNPs were synthesized in high yield using 65% HNO3. The 1H‐NMR study shows that the preferred site of nitration of the naphthyl substituted porphyrin is the carbon atom of the meso‐substituents para to its bond to the porphyrin ring. The reaction leads to exquisite regioselectivity in favor of the mono, di, and tri‐nitro‐TNP. Quantum‐chemical ab initio calculations at different levels of theory were performed in order to explain the experimentally observed reactivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate [C11H15NO2S] was synthesized by the Gewald method. Its single crystals were grown from an alcohol/ethyl acetate solution at 15 °C and characterized using IR and 1H‐NMR. These single crystals were irradiated for 72 h at 298 K by a 60Co gamma source with a dose speed of 0.864 kGy/h. After irradiation, electron spin resonance (ESR) measurements were carried out to study radiation‐induced radicals in the temperature range from 120 to 450 K. Additionally, for the single crystal, ESR angular dependencies were measured in the xy, xz and yz planes of the substance. This irradiated single crystal was analyzed based on the ESR spectra. Analysis of the spectra revealed that the radical was formed by a C–H bond fission at the carbon end of the substance. It was also observed that the color of the sample changed after irradiation. The hyperfine and g parameters were determined from the experimental spectra. It was inferred from these results that the hyperfine parameters and g value exhibited anisotropic behavior. The average values of these parameters were calculated as follows: g = 2.0088, AH1=H2 = 20.70 G, AH3=H4 = 10.80 G, AHa = 4.59 G, AHb = 3.24 G and, AN = 6.10 G. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A new merocyanine dye, 1,3‐Dimethyl‐5‐{(thien‐2‐yl)‐[4‐(1‐piperidyl)phenyl]methylidene}‐ (1H, 3H)‐pyrimidine‐2,4,6‐trione 3 , has been synthesized by condensation of 2‐[4‐(piperidyl)benzoyl]thiophene 1 with N,N′‐dimethyl barbituric acid 2 . The solvatochromic response of 3 dissolved in 26 solvents of different polarity has been measured. The solvent‐dependent long‐wavelength UV/Vis spectroscopic absorption maxima, vmax, are analyzed using the empirical Kamlet–Taft solvent parameters π* (dipolarity/polarizability), α (hydrogen‐bond donating capacity), and β (hydrogen‐bond accepting ability) in terms of the well‐established linear solvation energy relationship (LSER): (1) The solvent independent coefficients s , a , and b and (vmax)0 have been determined. The McRae equation and the empirical solvent polarity index, ET(30) have been also used to study the solvatochromism of 3 . Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The hydrolysis of ethyl threo‐2‐(1‐adamantyl)‐3‐hydroxybutyrate ( 1 ) and the parent ester ethyl 3‐hydroxybutyrate ( 4 ) has been studied experimentally and computationally. In the hydrolysis of threo‐ester 1 with 2 M NaOH, predominantly retro‐aldol product was observed, whereas the hydrolyzed product was present in a minor amount. When the reaction is carried out under the same conditions with the parent ester ethyl 3‐hydroxybutyrate ( 4 ), hydrolyzed product is exclusively observed. The competitive pathways, namely hydrolysis and the retro‐aldol reaction for 1 and 4 were investigated using DFT calculations in the both gas and solvent phase. The calculated results in the solvent phase at B3LYP/6–31 + G* level revealed that the formation of retro‐aldol products is kinetically preferred over the hydrolysis of threo‐ester 1 in the presence of a base. However, the parent ester 4 showed that the retro‐aldol process is less favored than the hydrolysis process under similar conditions. The steric effect imposed by the bulky adamantyl group to enhance the activation barriers for the hydrolysis of the ethyl threo‐2‐(1‐adamantyl)‐3‐hydroxybutyrate ( 1 ) was further supported by the calculations performed with tert‐butyl group at the α‐carbon atom of ethyl 3‐hydroxybutyrate ( 7 ). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Photoinduced reactions of 9‐oxo‐6,9‐dihydro[1,2,5]selenadiazolo[3,4‐f]quinoline‐8‐carboxylic acid (SeQCA) were investigated in alkaline media (aqueous NaOH solutions) by electron paramagnetic resonance (EPR) spectroscopy, following the in situ formation of paramagnetic species. According to UV–Vis and nuclear magnetic resonance investigations, protonation (pH ≈ 11) and deprotonation (pH ≈ 13) of the imino hydrogen of the 4‐pyridone moiety has to be considered, reflected also in the different EPR spectra observed upon irradiation. Photoinduced generation of radicals was found only for carboxylate substituted SeQCA; other studied selenadiazoloquinolone derivatives, together with those substituted at the C(8) position (R = H, COOCH2CH3, COOCH3, COCH3 or CN), did not generate paramagnetic species during exposure. Consequently, photodecarboxylation was suggested as the decisive step, accompanied by the decomposition of the selenadiazole ring, resulting in the formation of ortho‐hydroxylate anions. EPR parameters elucidated from experimental EPR spectra obtained at pH ≈ 11 and pH ≈ 13 indicate the formation of oxygen‐centered radicals at the decarboxylated 4‐pyridone ring. EPR spin trapping experiments with nitromethane confirmed a very effective photoinduced electron transfer from all the selenadiazoloquinolones investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Treatment of 2,4‐dinitropentane with bromine and sodium methoxide in methanol, affords formation of an ether product, 2,4‐dibromo‐3‐methoxy‐2,4‐dinitropentane, in 59% yield as a mixture of three diastereomers. This observation has led to a general synthesis of 3‐alkoxy‐2,4‐dibromo‐2,4‐dinitropentanes, obtained in 75‐86% yield from 2,4‐dibromo‐2,4‐dinitropentane as the preferred reactant. 4‐Bromo‐2,4‐dinitro‐2‐pentene has been identified as an intermediate in these reactions. The nitroalkene has been isolated and undergoes conjugate addition with alkoxides to afford the same ether products after brominative work‐up. The nitroalkene undergoes conjugate addition with sodium azide to give 3‐azido‐2,4‐dibromo‐2,4‐dinitropentane in 38% yield as a mixture of two isomers in which the (R*,R*) isomer predominates. Sequential treatment of 2,4‐dibromo‐2,4‐dinitropentane with sodium methoxide followed by sodium iodide and acetic acid gives 3‐methoxy‐2,4‐dinitropentane in 63% yield, the overall product of simple methoxylation of 2,4‐dinitropentane. However, attempted complete debromination of 2,4‐dibromo‐3‐methoxy‐2,4‐dinitropentane with excess sodium iodide and acetic acid results only in monodebromination to give 2‐bromo‐3‐methoxy‐2,4‐dinitropentane in 86% yield. Likewise, 2‐bromo‐3‐ethoxy‐2,4‐dinitropentane is formed in 93% yield from the ethoxy analog. A mechanistic rationale is offered for condition‐specific removal of the second Br atom in these reactions. Treatment of 3‐methoxy‐2,4‐dinitropentane with potassium acetate/iodine in dimethyl sulfoxide affords formation of 4,5‐dihydro‐3,4‐dimethyl‐3‐methoxy‐4‐nitroisoxazole 2‐oxide in 30% yield as a single diastereomer. Conversion of 2‐bromo‐3‐methoxy‐2,4‐dinitropentane in 15% yield to 4,5‐dihydro‐3,4‐dimethyl‐3‐methoxy‐4‐nitroisoxazole 2‐oxide is also possible by using potassium acetate in dimethyl sulfoxide. The mechanistic pathways for formation of 4,5‐dihydro‐3,4‐dimethyl‐3‐methoxy‐4‐nitroisoxazole 2‐oxide apparently involve unstable 3‐methoxy‐1,2‐dimethyl‐1,2‐dinitrocyclopropane as the common intermediate. Similarly, 2‐bromo‐3‐ethoxy‐2,4‐dinitropentane affords 4,5‐dihydro‐3‐ethoxy‐3,4‐dimethyl‐4‐nitroisoxazole 2‐oxide in 13% yield. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The study of an isomeric A / B mixture of the title oxime 1 , by photolytic or thermal E,Z‐isomerization and NMR measurement including 1H{1H}‐NOE difference spectra, led to assignment of the E configuration to its predominating form A . The 1H/13C data were interpreted in terms of steric overcrowding of both forms, especially of the thermolabile photoproduct B . Four classical (empirical) NMR methods of elucidating the oxime geometry were critically tested on these results. Unexpected vapor‐phase photoconversion A → B in the window glass‐filtered solar UV and spectroscopic findings on their protonated states were discussed, as well. The kinetically controlled formation of the N‐protonated species (Z)‐ 5 + was proved experimentally. In addition, some 1H NMR assignments reported for structurally similar systems were rationalized ( 3 and 4 ) or revised ( 1 and 7–9 ) with the GIAO‐DFT(B3LYP) and/or GIAO‐HF calculational results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号