首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Density functional theory method was used to study the heats of formation, energetic properties, and thermal stability for a series of trinitromethyl‐substituted tetrazole and tetrazine derivatives with different substituents. It is found that the group ―NO2, ―NHNO2, or ―NF2 play a very important role in increasing the heats of formation of the derivatives. The calculated detonation velocities and pressures indicate that the group ―CF2NF2, ―NHNO2, ―1H‐tetrazolyl, ―2H‐tetrazolyl, or ―1,2,4,5‐tetrazinyl is an effective structural unit for enhancing their detonation performance. An analysis of the bond dissociation energies for several relatively weak bonds indicates that incorporating the group ―NHNO2 and ―NH2 into parent ring decreases their thermal stability. Considering the detonation performance and thermal stability, 37 compounds may be considered as the potential high‐energy compounds. Their oxygen balances are close to zero. These results provide basic information for the molecular design of novel high‐energy compounds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
4.
5.
The aminoxyl radical 6‐trifluoromethyl‐benzotriazol‐N‐oxyl (TFNO) has been generated from the parent hydroxylamine 6‐CF3‐1‐hydroxy‐benzotriazole (TFBT) by one‐electron oxidation with a CeIV salt and characterized by spectrophotometry and cyclic voltammetry (CV). Rate constants of H‐abstraction (kH) by TFNO from a number of H‐donor benzylic substrates have been determined spectrophotometrically in MeCN solution at 25 °C. A radical H‐atom transfer (HAT) route of oxidation is substantiated for TFNO by several pieces of evidence. The kinetic data also testify the relevance of stereoelectronic effects upon the HAT reactivity of TFNO. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this present work, using density functional theory and time‐dependent density functional theory methods, we theoretically study the excited‐state hydrogen bonding dynamics and the excited state intramolecular proton transfer mechanism of a new 2‐phenanthro[9,10‐d]oxazol‐2‐yl‐phenol (2PYP) system. Via exploring the reduced density gradient versus sign(λ2(r))ρ(r), we affirm that the intramolecular hydrogen bond O1‐H2?N3 is formed in the ground state. Based on photoexcitation, comparing bond lengths, bond angles, and infrared vibrational spectra involved in hydrogen bond, we confirm that the hydrogen bond O1‐H2?N3 of 2PYP should be strengthened in the S1 state. Analyses about frontier molecular orbitals prove that charge redistribution of 2PYP facilitates excited state intramolecular proton transfer process. Via constructing potential energy curves and searching transition state structure, we clarify the excited state intramolecular proton transfer mechanism of 2PYP in detail, which may make contributions for the applications of such kinds of system in future.  相似文献   

7.
Aryl‐substituted polyfluorinated carbanions, ArCHRf? where Rf = CF3 ( 1 ), C2F5 ( 2 ), i‐C3F7 ( 3 ), and t‐C4F9 ( 4 ), were analyzed by means of the natural bond orbital (NBO) theory at the B3LYP/6‐311+G(d,p) computational level. A lone pair NBO at the formal anionic center carbon (Cα) was not found in the Lewis structure. Instead, significant donor/acceptor NBO interactions between π(Cα‐C1) and σ*(Cβ‐F) or σ*(Cβ‐Cγ) were observed for 1 , 2 , 3a (strong electron‐withdrawing substituent, from p‐CF3 to p‐NO2), and 4 . Their second‐order donor/acceptor perturbation interaction energy, E(2), values decreased with the increase of the stability of carbanions. A larger E(2) value corresponds to longer Cβ‐F and Cβ‐Cγ bonds and a shorter Cα‐Cβ bond, indicating that the E(2) values can be associated with the negative hyperconjugation of the Cβ‐F and Cβ‐Cγ bonds. In accordance with this, the E(2) values for π(Cα‐C1) → σ*(Cβ‐F) were linearly correlated with the ΔGoβ‐F values (an empirical measure of β‐fluorine negative hyperconjugation obtained from an increased acidity). In 3b (weak electron‐withdrawing substituents, from H to m‐NO2) very large E(2) values for LP(Fβ) → π*(Cα‐Cβ) were obtained. This was attributed to the Cβ‐F bond cleavage and the Cα‐Cβ double bond formation in the Lewis structure that is caused by the extremely strong negative hyperconjugation of the Cβ‐F bond.  相似文献   

8.
We present a theoretical investigation about the excited state dynamical mechanism of 2‐(4′‐N,N‐dimethylaminophenyl)‐imidazo[4,5‐c]pyridine (DMAPIP‐c). Within the framework of density functional theory and time‐dependent density functional theory methods, we reasonably repeat the experimental electronic spectra, which further confirm the theoretical level used in this work is feasible. Given the best complex model, 3 methanol (MeOH) solvent molecules should be connected with DMAPIP‐c forming DMAPIP‐c‐MeOH complex in both ground state and excited state. Exploring the changes about bond lengths and bond angles involved in hydrogen bond wires, we find the O7‐H8···N9 one should be largely strengthened in the S1 state, which plays an important role in facilitating the excited state intermolecular proton transfer (ESIPT) process. In addition, the analyses about infrared vibrational spectra also confirm this conclusion. The redistribution about charges distinguished via frontier molecular orbitals based on the photoexcitation, we do find tendency of ESIPT reaction due to the most charges located around N9 atom in the lowest unoccupied molecular orbital. Based on constructing the potential energy curves of both S0 and S1 states, we not only confirm that the ESIPT process should firstly occur along with hydrogen bond wire O7‐H8···N9, but also find a low potential energy barrier 8.898 kcal/mol supports the ESIPT reaction in the S1 state forming DMAPIP‐c‐MeOH‐PT configuration. Subsequently, DMAPIP‐c‐MeOH‐PT could twist its dimethylamino moiety with a lower barrier 3.475 kcal/mol forming DMAPIP‐c‐MeOH‐PT‐TICT structure. Our work not only successfully explains previous experimental work but also paves the way for the further applications about DMAPIP‐c sensor in future.  相似文献   

9.
Dihydrogen bond (DHB) and X–H…σ interaction are discussed and compared here. Both interactions possess numerous characteristics of the hydrogen bond (HB). The Natural Bond Orbitals method results show that σ → σ* is the most important interaction connected with the electron charge transfer from the Lewis base to the Lewis acid for the DHB as well as for the X–H…σ HB. However, there are distinct differences between these interactions, and this is evident from the analysis based on the Quantum Theory of Atoms in Molecules as well as from the decomposition of the energy of interaction. The X–H…π interaction is also discussed here since it possesses few characteristics typical for the X–H…σ interaction and not for the DHB. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The time‐dependent density functional theory method was performed to investigate the excited‐state hydrogen‐bonding dynamics of N‐(2‐hydroxyethyl)‐1,8‐naphthalimide (2a) and N‐(3‐hydroxyethyl)‐1,8‐naphthalimide (3a) in methanol (meoh) solution. The ground and excited‐state geometry optimizations, electronic excitation energies, and corresponding oscillation strengths of the low‐lying electronically excited states for the complexes 2a + 2meoh and 3a + 2meoh as well as their monomers 2a and 3a were calculated by density functional theory and time‐dependent density functional theory methods, respectively. We demonstrated that the three intermolecular hydrogen bonds of 2a + 2meoh and 3a + 2meoh are strengthened after excitation to the S1 state, and thus induce electronic spectral redshift. Moreover, the electronic excitation energies of the hydrogen‐bonded complexes in S1 state are correspondingly decreased compared with those of their corresponding monomer 2a and 3a. In addition, the intramolecular charge transfer of the S1 state for complexes 2a + 2meoh and 3a + 2meoh were theoretically investigated by analysis of molecular orbital. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Histidine is an important and versatile amino acid residue that plays a variety of structural and functional roles in proteins. Although the Raman bands of histidine are generally weak, histidine in the N‐deuterated cationic form with imidazole Nπ D and Nτ D bonds (N‐deuterated histidinium) gives two strong Raman bands assignable to the C4C5 stretch (νCC) and the Nπ C2 Nτ symmetric stretch (νNCN) of the imidazole ring. We examined the Raman spectra of N‐deuterated histidinium in 12 crystals with known structures. The observed νCC and νNCN wavenumbers were analyzed to find empirical correlations with the conformation and hydrogen bonding. The effect of conformation on the vibrational wavenumber was expressed as a threefold cosine function of the Cα Cβ C4C5 torsional angle. The effect of hydrogen bonding at Nπ or Nτ was assumed to be proportional to the inverse sixth power of the distance between the hydrogen and acceptor atoms. Multiple linear regression analysis clearly shows that the conformational effect on the vibrational wavenumber is comparable for νCC and νNCN. The hydrogen bond at Nπ weakly lowers the νCC wavenumber and substantially raises the νNCN wavenumber. On the other hand, the hydrogen bond at Nτ strongly raises the νCC wavenumber but does not affect the νNCN wavenumber. These empirical correlations may be useful in Raman spectral analysis of the conformation and hydrogen bonding states of histidine residues in proteins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, we present the optimized ground state geometrical structures, electronic excitation energies and corresponding oscillation strengths of the low‐lying electronically excited states for the isolated Tce‐CH3COCOOH and Tce‐CH3C(OH)2COOH as well as their corresponding hydrogen‐bonded dimers Tce‐CH3COCOOH‐H2O and Tce‐CH3C(OH)2COOH‐H2O through time‐dependent density functional theory method. It is found that the intermolecular hydrogen bonds C=O···H‐O are strengthened in the electronically excited states of the hydrogen‐bonded dimers Tce‐CH3COCOOH‐H2O and Tce‐CH3C(OH)2COOH‐H2O, in that the excitation energies of the related excited states for the hydrogen‐bonded dimers are decreased compared with those of the corresponding monomers. The calculated results are consistent with the rules that are first demonstrated by Zhao on the excited‐state hydrogen bonding dynamics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Based on energetic compound [1,2,5]‐oxadiazolo‐[3,4‐d]‐pyridazine, a series of functionalized derivatives were designed and first reported. Afterwards, the relationship between their structure and performance was systematically explored by density functional theory at B3LYP/6‐311 g (d, p) level. Results show that the bond dissociation energies of the weakest bond (N–O bond) vary from 157.530 to 189.411 kJ · mol?1. The bond dissociation energies of these compounds are superior to that of HMX (N–NO2, 154.905 kJ · mol?1). In addition, H1, H2, H4, I2, I3, C1, C2, and D1 possess high density (1.818–1.997 g · cm?3) and good detonation performance (detonation velocities, 8.29–9.46 km · s?1; detonation pressures, 30.87–42.12 GPa), which may be potential explosives compared with RDX (8.81 km · s?1, 34.47 GPa ) and HMX (9.19 km · s?1, 38.45 GPa). Finally, allowing for the explosive performance and molecular stability, three compounds may be suggested as good potential candidates for high‐energy density materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Spectroscopic studies on excited‐state proton transfer of a new chromophore 2‐(2′‐benzofuryl)‐3‐hydroxychromone (BFHC) have been reported recently. In the present work, based on the time‐dependent density functional theory (TD‐DFT), the excited‐state intramolecular proton transfer (ESIPT) of BFHC is investigated theoretically. The calculated primary bond lengths and angles involved in hydrogen bond demonstrate that the intramolecular hydrogen bond is strengthened. In addition, the phenomenon of hydrogen bond reinforce has also been testified based on infrared (IR) vibrational spectra as well as the calculated hydrogen bonding energies. Further, hydrogen bonding strengthening manifests the tendency of excited state proton transfer. Our calculated results reproduced absorbance and fluorescence emission spectra of experiment, which verifies that the TD‐DFT theory we used is reasonable and effective. The calculated Frontier Molecular Orbitals (MOs) further demonstrate that the excited state proton transfer is likely to occur. According to the calculated results of potential energy curves along O―H coordinate, the potential energy barrier of about 14.5 kcal/mol is discovered in the S0 state. However, a lower potential energy barrier of 5.4 kcal/mol is found in the S1 state, which demonstrates that the proton transfer process is more likely to happen in the S1 state than the S0 state. In other words, the proton transfer reaction can be facilitated based on the photo‐excitation effectively. Moreover, the phenomenon of fluorescence quenching could be explained based on the ESIPT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The kinetics of the reactions of 2,4‐dinitrofluorobenzene (DNFB) and 2,4‐dinitrochlorobenzene (DNClB) with 2‐guanidinobenzimidazole (2‐GB) at 40 ± 0.2 °C in dimethylsulphoxide (DMSO), toluene, and in toluene–DMSO mixtures, and with 1‐(2‐aminoethyl)piperidine (2‐AEPip) and N‐(3‐aminopropyl)morpholine (3‐APMo) in toluene at 25 ± 0.2 °C were studied under pseudo first‐order conditions. For the reactions of 2‐GB carried out in pure DMSO, the second‐order rate coefficients were independent of the amine concentration. In contrast, the reactions of 2‐GB with DNFB in toluene, showed a kinetic behaviour consistent with a base‐catalysed decomposition of the zwitterionic intermediate. These results suggest an intramolecular H‐bonding of 2‐GB in toluene, which is not present in DMSO. To confirm this interpretation the reactions were studied in DMSO–toluene mixtures. Small amounts of DMSO produce significant increase in rate that is not expected on the basis of the classical effect of a dipolar aprotic medium; the effect is consistent with the formation of a nucleophile/co‐solvent mixed aggregate. For the reactions of 3‐APMo with both substrates in toluene, the second‐order rate coefficients, kA, show a linear dependence on the [amine]. 3‐APMo is able to form a six‐membered ring by an intramolecular H‐bond which prevents the formation of self‐aggregates. In contrast, a third order was observed in the reactions with 2‐AEPip: these results can be interpreted as a H‐bonded homo‐aggregate of the amine acting as a better nucleophile than the monomer. Most of these results can be well explained within the frame of the ‘dimer nucleophile’ mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The time‐dependent density functional theory (TDDFT) method has been performed to investigate the excited state and hydrogen bonding dynamics of a series of photoinduced hydrogen‐bonded complexes formed by (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate with water molecules in vacuum. The ground state geometric optimizations and electronic transition energies as well as corresponding oscillator strengths of the low‐lying electronic excited states of the (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate monomer and its hydrogen‐bonded complexes O1‐H2O, O2‐H2O, and O1O2‐(H2O)2 were calculated by the density functional theory and TDDFT methods, respectively. It is found that in the excited states S1 and S2, the intermolecular hydrogen bond formed with carbonyl oxygen is strengthened and induces an excitation energy redshift, whereas the hydrogen bond formed with phenolate oxygen is weakened and results in an excitation energy blueshift. This can be confirmed based on the excited state geometric optimizations by the TDDFT method. Furthermore, the frontier molecular orbital analysis reveals that the states with the maximum oscillator strength are mainly contributed by the orbital transition from the highest occupied molecular orbital to the lowest unoccupied molecular orbital. These states are of locally excited character, and they correspond to single‐bond isomerization while the double bond remains unchanged in vacuum.  相似文献   

17.
In this paper, we report an example of intermolecular solid‐state proton transfer in the bicyclic guanidine, hppH. A combination of X‐ray crystallography, CPMAS NMR (13C and 15N) and theoretical calculations allows us to determine that a double proton transfer takes place in the (hppH)2 dimer with an activation energy of about 50 kJ mol?1. According to the B3LYP/6‐311++G(d,p) calculations, the double proton transfer occurs non‐symmetrically through a zwitterion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The synthesis of three new quinoxaline mono‐N‐oxides derivatives, namely, 2‐tert‐butoxycarbonyl‐3‐methylquinoxaline‐N‐oxide, 2‐phenylcarbamoyl‐3‐ethylquinoxaline‐N‐oxide, and 2‐carbamoyl‐3‐methylquinoxaline‐N‐oxide, from their corresponding 1,4‐di‐N‐oxides is reported. Samples of these compounds were used for a thermochemical study, which allowed derivation of their gaseous standard molar enthalpies of formation, , from their enthalpies of formation in the condensed phase, , determined by static bomb combustion calorimetry, and from their enthalpies of sublimation, , determined by Calvet microcalorimetry. Finally, combining the for the quinoxaline‐N‐oxides derived in this work with literature values for the corresponding 1,4‐di‐N‐oxides and atomic oxygen, the bond dissociation enthalpies for cleavage of the first N?O bond in the di‐N‐oxides, DH1(N–O), were obtained and compared with existing data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号