共查询到20条相似文献,搜索用时 15 毫秒
1.
Annette M. Schmidt 《Macromolecular rapid communications》2005,26(2):93-97
Summary: The synthesis of core‐shell particles with a poly(ε‐caprolactone) (PCL) shell and magnetite (Fe3O4) contents of between 10 wt.‐% and 41 wt.‐% proceeds by surface‐initiated ring‐opening polymerization of ε‐caprolactone to give surface‐immobilized oligomers with between 1 400 g · mol−1 and 11 500 g · mol−1. The particles are dispersable in good solvents for the PCL shell. Magnetization experiments on the resulting superparamagnetic ferrofluids give a core‐size distribution with an average diameter, dv, of about 9.7 nm.
2.
Gijs J. M. Habraken Andreas Heise Paul. D. Thornton 《Macromolecular rapid communications》2012,33(4):272-286
N‐Carboxyanhydride ring‐opening polymerization (NCA ROP) is a synthetically straightforward methodology to generate homopolypeptides. Extensive control over the polymerization permits the production of highly monodisperse synthetic polypeptides to a targeted molecular weight in the absence of unfavorable side reactions. Sequential NCA ROP permits the creation of block copolypeptides composed of individual polypeptide blocks boasting different functionalities, secondary structures, and desirable chemical properties. Consequently, a plethora of novel materials have been generated that have found wide‐range applicability. This review offers an insight into contemporary synthetic approaches toward NCA ROP before highlighting a number of block copolypeptide architectures generated. 相似文献
3.
Koichi Koga Atsushi Sudo Haruo Nishida Takeshi Endo 《Journal of polymer science. Part A, Polymer chemistry》2009,47(15):3839-3844
A new convenient synthesis of N‐carboxyanhydrides (NCAs) of α‐amino acids was achieved by selective cyclization of urethane derivatives of α‐amino acids. The urethanes were readily synthesized via N‐carbamoylation of α‐amino acids by bis(4‐nitrophenyl)carbonate quantitatively. These urethanes having 4‐nitrophenoxy moiety were tolerant to air and moisture to allow their facile purification and storage. When the obtained urethanes were heated in 2‐butanone at 60 °C, they underwent the selective cyclization via intramolecular nucleophilic attack of the carboxyl moiety to the urethane moiety with releasing 4‐nitrophenol, leading to the successful formation of the corresponding NCAs. Addition of carboxylic acids remarkably stabilized the formed NCAs during the reaction, allowing their isolation in high yields. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3839–3844, 2009 相似文献
4.
Leendert W. Schwab Renee Kroon Arend Jan Schouten Katja Loos 《Macromolecular rapid communications》2008,29(10):794-797
The synthesis of poly(β‐alanine) by Candida antarctica lipase B immobilized as novozyme 435 catalyzed ring‐opening of 2‐azetidinone is reported. After removal of cyclic side products and low molecular weight species pure linear poly(β‐alanine) is obtained. The formation of the polymer is confirmed with 1H NMR spectroscopy and MALDI‐TOF mass spectrometry. The average degree of polymerization of the obtained polymer is limited to = 8 by its solubility in the reaction medium. Control experiments with β‐alanine as a substrate confirmed that the ring structure of the 2‐azetidinone is necessary to obtain the polymer.
5.
Summary: Poly(D ,L ‐lactide) with a molar mass of 105 g · mol−1 and a yield over 90% was produced in 10 min by the ring‐opening polymerization of D ,L ‐lactide under microwave irradiation with forward power of 255 W. A degradation of the poly(D ,L ‐lactide) was also induced by microwaves with a power level over 340 W. The molar mass of poly(D ,L ‐lactide) was dependent upon the competition between the polymerization of D ,L ‐lactide and the degradation of the resulting polymer.
6.
Sarah El Habnouni Vincent Darcos Jean Coudane 《Macromolecular rapid communications》2009,30(3):165-169
A new functional lactone, α‐iodo‐ε‐caprolactone (αIεCL), was synthesized from ε‐caprolactone by anionic activation using a non‐nucleophilic strong base (lithium diisopropylamide) followed by an electrophilic substitution with iodine chloride. Ring‐opening (co)polymerizations of the resulting monomer with ε‐caprolactone were carried out using tin 2‐ethylhexanoate as a catalyst in toluene at 100 °C. Homopolymerization of αIεCL was achieved, and poly(αIεCL) was fully characterized by SEC, 1H NMR and elemental analysis. Random copolymerizations of αIεCL with εCL were controlled with experimental molecular weights close to the theoretical values, narrow molecular weight distributions and a good agreement between experimental and theoretical molar compositions of αIεCL.
7.
8.
Yasutaka Kamei Atsushi Nagai Atsushi Sudo Haruo Nishida Kiyoshi Kikukawa Takeshi Endo 《Journal of polymer science. Part A, Polymer chemistry》2008,46(8):2649-2657
A series of activated urethane‐type derivatives of γ‐benzyl‐L ‐glutamate were synthesized, and their potential as monomers for polypeptide synthesis was investigated. The derivatives of the focus of this work were a series of N‐aryloxycarbonyl‐γ‐benzyl‐L ‐glutamate 1 , of which aryl groups were phenyl, 4‐chlorophenyl, and 4‐nitrophenyl. These urethanes 1 were reactive in polar solvents such as dimethylsulfoxide, N,N‐dimethylformamide (DMF), and N,N‐dimethylacetamide (DMAc), and were efficiently converted into poly(γ‐benzyl‐L ‐glutamate) (poly(BLG)) under mild conditions; at 60 °C without addition of any catalyst. Among the three urethanes, that having 4‐nitrophenoxycarbonyl group 1c was the most reactive to give poly(BLG) efficiently, as was expected from the highly electron deficient nature of the nitrophenoxycarbonyl group. On the other hand, the urethane 1a having phenoxycarbonyl group was also efficiently converted into poly(BLG), in spite of the intrinsically less electrophilicity of the phenoxycarbonyl group. In addition, the successful formation of poly(BLG) by the reaction of 1a favored its diluted concentration (0.1 M) much more than 2.0 M, the optimum initial concentration for 1c . 1H NMR spectroscopic analyses of the reactions in situ revealed that the predominant pathway from 1 to poly(BLG) involved the intramolecular cyclization of 1 into the corresponding N‐carboxyanhydride, with release of phenol and its successive ring‐opening polymerization with release of carbon dioxide. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2649–2657, 2008 相似文献
9.
10.
Kuk Ro Yoon Yong‐Won Lee Jungkyu K. Lee Insung S. Choi 《Macromolecular rapid communications》2004,25(16):1510-1513
Summary: Biodegradable poly(1,5‐dioxepan‐2‐one) (PDXO) was grown directly from Si OH groups of a silica nanoparticle by surface‐initiated, ring‐opening polymerization (SI‐ROP) of 1,5‐dioxepan‐2‐one (DXO). The direct SI‐ROP of DXO was achieved by heating a mixture of Sn(Oct)2, DXO, and the silica nanoparticles (316 nm in diameter) in anhydrous toluene. The resulting silica/PDXO hybrid nanoparticles were characterized by means of 1H NMR spectroscopy, IR spectroscopy, thermogravimetric analysis, and field‐emission scanning electron microscopy.
11.
Xudong Lou Christophe Detrembleur Philippe Lecomte Robert Jrme 《Macromolecular rapid communications》2002,23(2):126-129
γ‐Acryloyloxyethyl‐γ‐butyrolactone is formed as a byproduct when the polymerization of γ‐acryloyloxy‐ε‐caprolactone is initiated with aluminium isopropoxide in toluene. The extent of this side reaction decreases with decreasing temperature and is dependent on whether the reaction is stopped as soon as monomer conversion is complete or not. A two‐step backbiting mechanism is proposed for this intramolecular transesterification reaction. 相似文献
12.
Mechanistic Investigations of the Stereoselective Rare Earth Metal‐Mediated Ring‐Opening Polymerization of β‐Butyrolactone 下载免费PDF全文
Peter T. Altenbuchner Alexander Kronast Stefan Kissling Dr. Sergei I. Vagin Prof. Eberhardt Herdtweck Dr. Alexander Pöthig Dr. Peter Deglmann Dr. Robert Loos Prof. Dr. Bernhard Rieger 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(39):13609-13617
Poly(3‐hydroxybutyrate) (PHB) is produced by numerous bacteria as carbon and energy reserve storage material. Whereas nature only produces PHB in its strictly isotactic (R) form, homogeneous catalysis, when starting from racemic (rac) β‐butyrolactone (BL) as monomer, can in fact produce a wide variety of tacticities. The variation of the metal center and the surrounding ligand structure enable activity as well as tacticity tuning. However, no homogeneous catalyst exists to date that is easy to modify, highly active, and able to produce PHB with high isotacticities from rac‐β‐BL. Therefore, in this work, the reaction kinetics of various 2‐methoxyethylamino‐bis(phenolate) lanthanide (Ln=Sm, Tb, Y, Lu) catalysts are examined in detail. The order in monomer and catalyst are determined to elucidate the reaction mechanism and the results are correlated with DFT calculations of the catalytic cycle. Furthermore, the enthalpies and entropies of the rate‐determining steps are determined through temperature‐dependent in situ IR measurements. Experimental and computational results converge in one specific mechanism for the ring‐opening polymerization of BL and even allow us to rationalize the preference for syndiotactic PHB. 相似文献
13.
Gijs J. M. Habraken Cor E. Koning Andreas Heise 《Journal of polymer science. Part A, Polymer chemistry》2009,47(24):6883-6893
The synthesis of polypeptide‐containing block copolymers combining N‐carboxyanhydride (NCA) ring‐opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was used. Well‐defined polypeptide macroinitiators were obtained from γ‐benzyl‐L ‐glutamate NCA, O‐benzyl‐serine NCA, and N‐benzyloxy‐L ‐lysine. Subsequent ATRP macroinitiation from the polypeptides resulted in higher than expected molecular weights. Analysis of the reaction products and model reactions confirmed that this is due to the high frequency of termination reactions by disproportionation in the initial phase of the ATRP, which is inherent in the amide initiator structure. In some cases selective precipitation could be applied to remove unreacted macroinitiator to yield well‐defined block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009 相似文献
14.
Xin Li Yinghong Zhu Jun Ling Zhiquan Shen 《Macromolecular rapid communications》2012,33(11):1008-1013
Unmodified β‐cyclodextrin has been directly used to initiate ring‐opening polymerization of ϵ‐caprolactone in the presence of yttrium trisphenolate. Well‐defined cyclodextrin (CD)‐centered star‐shaped poly(ϵ‐caprolactone)s have been successfully synthesized containing definite average numbers of arms (Narm = 4–6) and narrow polydispersity indexes (below 1.10). The number‐average molecular weight ( ) and average molecular weight per arm ( ) are controlled by the feeding molar ratio of monomer to initiator. The prepared star‐PCL with of 2.7 × 103 is in fully amorphous and that with of 13.3 × 103 is crystallized. In addition, the obtained poly(e‐caprolactone) (PCL) stars with various molecular weights have different solubilities in methanol and tetrahydrofuran, which can be applied for further modifications. 相似文献
15.
Reile M. Slattery Amanda E. Stahl Kelsey R. Brereton Arnold L. Rheingold David B. Green Joseph M. Fritsch 《Journal of polymer science. Part A, Polymer chemistry》2019,57(1):48-59
Seven magnesium complexes ( 1–7 ) were synthesized by reaction of new ( L 3 ‐H – L 5 ‐H ) and previously reported ketoimine pro‐ligands with dibutyl magnesium and were isolated in 59–70% yields. Complexes 1–7 were characterized fully and consisted of bis‐ligated homoleptic ketoiminates coordinated in distorted octahedral geometry around the magnesium centers. The complexes were investigated for their ability to initiate the ring opening polymerization (ROP) of l ‐lactide (L‐LA) to poly‐lactic acid (PLA) and ?‐caprolactone (?CL) to poly‐caprolactone in the presence of 4‐fluorophenol co‐catalyst. For L‐LA polymerization, complexes containing ligand electron‐donating groups ( 1–5 ) achieved >90% conversion in 2 h at 100 °C, while the presence of CF3 groups in 6 and 7 slowed or resulted in no PLA detected. With ?CL, ROP initiated with 1–7 resulted in lower percentage conversion with similar electronic effects. Moderate molecular weight PLA polymeric material (14.3–21.3 kDa) with low polydispersity index values (1.23–1.56) was obtained, and ROP appeared to be living in nature. Copolymerization of L‐LA and ?CL yielded block copolymers only from the sequential polymerization of ?CL followed by L‐LA and not the reverse sequence of monomers or the simultaneous presence of both monomers. Polymers and copolymers were characterized with NMR, gel permeation chromatography, and differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 48–59 相似文献
16.
17.
Dr. Freddi Philippart Marcus Arlt Steve Gotzen Dr. Stefanie‐Joana Tenne Dr. Marco Bocola Dr. Hsui‐Hui Chen Dr. Leilei Zhu Prof. Ulrich Schwaneberg Prof. Jun Okuda 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(41):13865-13871
A β‐barrel protein hybrid catalyst was prepared by covalently anchoring a Grubbs–Hoveyda type olefin metathesis catalyst at a single accessible cysteine amino acid in the barrel interior of a variant of β‐barrel transmembrane protein ferric hydroxamate uptake protein component A (FhuA). Activity of this hybrid catalyst type was demonstrated by ring‐opening metathesis polymerization of a 7‐oxanorbornene derivative in aqueous solution. 相似文献
18.
Hui Peng Jun Ling Zhiquan Shen 《Journal of polymer science. Part A, Polymer chemistry》2012,50(6):1076-1085
Five rare earth complexes are first introduced to catalyze ring opening polymerizations (ROPs) of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride (BLG NCA) and L ‐alanine NCA (ALA NCA) including rare earth isopropoxide (RE(OiPr)3), rare earth tris(2,6‐di‐tert‐butyl‐4‐methylphenolate) (RE(OAr)3), rare earth tris(borohydride) (RE(BH4)3(THF)3), rare earth tris[bis(trimethylsilyl)amide] (RE(NTMS)3), and rare earth trifluoromethanesulfonate. The first four catalysts exhibit high activities in ROPs producing polypeptides with quantitative yields (>90%) and moderate molecular weight (MW) distributions ranging from 1.2 to 1.6. In RE(BH4)3(THF)3 and RE(NTMS)3 catalytic systems, MWs of the produced polypeptides can be controlled by feeding ratios of monomer to catalyst, which is in contrast to the systems of RE(OiPr)3 and RE(OAr)3 with little controllability over the MWs. End groups of the polypeptides are analyzed by MALDI‐TOF MS and polymerization mechanisms are proposed accordingly. With ligands of significant steric hindrance in RE(OiPr)3 and RE(OAr)3, deprotonation of 3‐NH of NCA is the only initiation mode producing a N‐rare earth metallated NCA ( i ) responsible for further chain growth, resulting in α‐carboxylic‐ω‐aminotelechelic polypeptides after termination. In the case of RE(BH4)3(THF)3 with small ligands, another initiation mode at 5‐CO position of NCA takes place simultaneously, resulting in α‐hydroxyl‐ω‐aminotelechelic polypeptides. In RE(NTMS)3 system, the protonated ligand hexamethyldisilazane (HMDS) initiates the polymerization and produces α‐amide‐ω‐aminotelechelic polypeptides. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
19.
Malgorzata Basko Andrzej Duda Slawomir Kazmierski Przemyslaw Kubisa 《Journal of polymer science. Part A, Polymer chemistry》2013,51(22):4873-4884
Cationic copolymerization of racemic‐β‐butyrolactone (β‐BL) with l,l ‐lactide (LA) initiated by alcohol and catalyzed by trifluoromethanesulfonic acid proceeding by activated monomer (AM) mechanism was investigated. Although both comonomers were present from the beginning in the reaction mixture, polymerization proceeded in sequential manner, with poly‐BL formed at the first stage acting as a macroinitiator for the subsequent polymerization of LA. Such course of copolymerization was confirmed by following the consumption of both comonomers throughout the process as well as by observing the changes of growing chain‐end structure using 1H NMR. 13C NMR analysis and thermogravimetry revealed the block structure of resulting copolymers. The proposed mechanism of copolymerization was confirmed by the studies of changes of 1H NMR chemical shift of acidic proton in the course of copolymerization, providing an indication that indeed protonated species and hydroxyl groups are present throughout the process, as required for AM mechanism. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4873–4884 相似文献
20.
Liqiong Liao Lijian Liu Chao Zhang Shaoqin Gong 《Macromolecular rapid communications》2006,27(24):2060-2064
Summary: Microwave‐assisted ring‐opening polymerization of ε‐caprolactone in the presence of 1‐butyl‐3‐methylimidazolium tetrafluoroborate ionic liquid using zinc oxide as a catalyst is investigated. By adding 30 wt.‐% ionic liquid, poly(ε‐caprolactone) with a weight‐average molar mass of 28 500 g · mol−1 is obtained at 85 W for 30 min. The results indicate that the polymerization could be efficiently enhanced in the presence of ionic liquids under microwave irradiation because ionic liquids can effectively absorb microwave energy.