首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A heart‐cutting two‐dimensional high‐performance liquid chromatography method was developed to simultaneously quantify five major proteins and seven food additives (maltol, ethyl maltol, vanillin, ethyl vanillin, benzoic acid, sorbic acid, and saccharin sodium) in milk and milk powders. In this two‐dimensional system, a Venusil XBP‐C4 column was selected in the first dimension for protein separation, and a Hypersil ODS‐2 C18 column was employed in the second dimension for additive separation; a two‐position, six‐port switching valve was used to transfer the targets (additives) from the first dimension to the second dimension. Method validation consisted of selectivity, response function, linearity, precision, sensitivity, and recovery. In addition, a conventional one‐dimensional high‐performance liquid chromatography method was also tested for comparison. The two‐dimensional method resulted in significantly improved recovery of the food additives compared to the conventional method (90.6–105.4% and 65.5–86.5%, respectively). Furthermore, this novel method has a simple one‐step sample preparation procedure, which shortens the analysis time, resulting in more efficient analysis and less solvent usage.  相似文献   

2.
The use of transient moving chemical reaction boundary (tMCRB) was investigated for the on‐line preconcentration of native amino acids in heart‐cutting 2D‐CE with multiple detection points using contactless conductivity detection. The tMCRB focusing was obtained by using ammonium formate (pH 8.56) as sample matrix and acetic acid (pH 2.3) as a BGE in the first dimension of the heart‐cutting 2D‐CE. Different experimental parameters such as the injected volume and the concentration in ammonium formate were optimized for improving the sensitivity of detection. A stacked fraction from the first dimension was selected, isolated in the capillary, and then separated in the second dimension in the presence of a chiral selector ((+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid). This on‐line tMCRB preconcentration coupled with heart‐cutting 2D‐CE was applied with success to the chiral separation of D ,L ‐phenylalanine, and D ,L ‐threonine in a mixture of 22 native amino acids. The sample mixture was diluted in 0.8 M of ammonium formate, and injected at a concentration of 2.5 μM for each enantiomer with a volume corresponding to 10% of the total capillary volume. An LOD (S/N=3) of 2 μM was determined for L ‐threonine.  相似文献   

3.
The development of an off-line comprehensive 2-dimensional liquid chromatography (2-D-LC) method for the analysis of procyanidins is reported. In the first dimension, oligomeric procyanidins were separated according to molecular weight by hydrophilic interaction chromatography (HILIC), while reversed phase LC was employed in the second dimension to separate oligomers based on hydrophobicity. Fluorescence, UV and electrospray ionisation mass spectrometry (ESI-MS) were employed for identification purposes. The combination of these orthogonal separation methods is shown to represent a significant improvement compared to 1-dimensional methods for the analysis of complex high molecular weight procyanidin fractions, by simultaneously providing isomeric and molecular weight information. The low correlation (r2 < 0.2100) between the two LC modes afforded a practical peak capacity in excess of 2300 for the optimal off-line method. The applicability of the method is demonstrated for the analysis of phenolic extracts of apple and cocoa.  相似文献   

4.
Solvent effect on the morphology of poly(p‐oxybenzoyl) (POB) prepared by the reaction‐induced phase separation of oligomers was examined by the polymerization of p‐acetoxybenzoic acid in perfluoropolyether AflunoxTM (AFL2507 and AFL606). Polymerization was carried out at 320°C for 6 hr. POB microspheres were formed in AFL2507 by the liquid–liquid phase separation of oligomers due to the low miscibility of oligomers in AFL2507. The molecular weight of the solvent influenced the morphology, and the polymerization in AFL606 of which the molecular weight was lower than AFL2507 yielded whiskers formed by crystallization of oligomers induced by the increase in miscibility compared with that in AFL2507. The solvent structure and its molecular weight influenced the miscibility of oligomers and ultimately controlled the morphology from whisker to microsphere. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The development of a two-dimensional liquid chromatographic system requires a process of assessment that can yield an optimum performing system with minimal experimental evaluation. Information Theory and a geometric approach to Factor Analysis are two techniques that when used in combination, provide important information on the expected two-dimensional performance. In the present study, we compare the predicted separation performance of two-dimensional systems that have been subjected to analysis by Information Theory and Factor Analysis to that of actual chromatographic separation performance. Our test separation comprised a mixture of 32 oligostyrene structural isomers and stereoisomers. The optimal combination as determined by Information Theory and Factor Analysis consisted of a C18 column with a methanol mobile phase in the first dimension and a carbon clad zirconia column with an acetonitrile mobile phase in the second dimension. This system was also shown to be the most successful practical system when a heart-cutting approach was employed. The practical results were in total agreement with the results from Information Theory and Factor Analysis. The number of isomers resolved using this system was 27. A second system, namely one comprising of a C18 column and methanol mobile phase in the first dimension and a carbon clad zirconia column with a methanol mobile phase in the second dimension was also predicted to be a system with high separation potential. However, practical assessment of this system did not realise the theoretical predictions, largely due to the long separation times required in the second dimension. Furthermore, all combinations that employed a C18 column with an acetonitrile mobile phase in the first dimension failed to realise the theoretical separation potential due to high solute crowding, low orthogonality and a disordered arrangement of bands along the first separation axis. This was also predicted by the theoretical assessment.  相似文献   

6.
Interface‐free two‐dimensional heart‐cutting capillary electrophoresis for two different classes of analytes (anionic and neutral) in a single capillary is presented. Simultaneous sample stacking and orthogonal separation were demonstrated. The anionic species were first analyzed by capillary zone electrophoresis in the first dimension. Then, the neutral compounds were separated in the second dimension by micellar electrokinetic chromatography using the common anionic surfactant sodium dodecyl sulfate. The first and second dimensions occurred automatically without changing the electrolyte and without polarity switching. Artificial mixtures (five anions and four neutral compounds) were successfully analyzed with sensitivity enhancement factors from 7 to 28. The orthogonal separation was complete within 8 min. Some analytical features and application to a spiked real river water sample were also studied.  相似文献   

7.
The laccase‐catalyzed oxidative polymerization of monomeric and dimeric lignin model compounds was carried out with oxygen as the oxidant in aqueous medium. The oligomers were characterized by using gel permeation chromatography (GPC) and matrix‐assisted laser desorption ionization time‐of‐flight mass spectroscopy (MALDI‐TOF MS) analysis. Oxidative polymerization led to the formation of oligomeric species with a number‐average molecular weight (Mn) that ranged from 700 to 2300 Da with a low polydispersity index. Spectroscopic analysis provided insight into the possible modes of linkages present in the oligomers, and the oligomerization is likely to proceed through the formation of C?C linkages between phenolic aromatic rings. The oligomers were found to show good UV light absorption characteristics with high molar extinction coefficient (5000–38 000 m ?1 cm?1) in the UV spectral region. The oligomers were blended independently with polyvinyl chloride (PVC) by using solution blending to evaluate the compatibility and UV protection ability of the oligomers. The UV/Vis transmittance spectra of the oligomer‐embedded PVC films indicated that these lignin‐like oligomers possessed a notable ability to block UV light. In particular, oligomers obtained from vanillyl alcohol and the dimeric lignin model were found to show good photostability in accelerated UV weathering experiments. The UV‐blocking characteristics and photostability were finally compared with the commercial low‐molecular‐weight UV stabilizer 2,4‐dihydroxybenzophenone.  相似文献   

8.
Researchers frequently use two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE) prior to mass spectrometric analysis in a proteomics approach. The i2D‐PAGE method, which ‘inverts’ the dimension of protein separation of the conventional 2D‐PAGE, is presented in this publication. Protein lysate of Channa striata, a freshwater snakehead fish, was separated based on its molecular weight in the first dimension and its isoelectric point in the second dimension. The first‐dimension separation was conducted on a gel‐free separation device, and the protein mixture was fractionated into 12 fractions in chronological order of increasing molecular weight. The second‐dimension separation featured isoelectric focusing, which further separated the proteins within the same fraction according to their respective isoelectric point. Advantages of i2D‐PAGE include better visualisation of the isolated protein, easy identification on protein isoforms, shorter running time, customisability and reproducibility. Erythropoietin standard was applied to i2D‐PAGE to show its effectiveness for separating protein isoforms. Various staining methods such as Coomassie blue staining and silver staining are also applicable to i2D‐PAGE. Overall, the i2D‐PAGE separation method effectively separates protein lysate and is suitable for application in proteomics research.  相似文献   

9.
A series of extended 6‐substituted quinoxaline AB monomer mixtures, 2‐(4‐fluorophenyl)‐3‐[4‐(4‐hydroxyphenoxy)phenyl]‐6‐substituted quinoxaline and 3‐(4‐fluorophenyl)‐2‐[4‐(4‐hydroxyphenoxy)phenyl]‐6‐substituted quinoxaline, were prepared and polymerized to afford phenylquinoxaline oligomers. High‐molecular‐weight polymers could not be obtained because of the formation of cyclic oligomers. On the basis of matrix‐assisted laser desorption/ionization time‐of‐flight analysis and molecular modeling results, the formation of a cyclic dimer could be a favorable process resulting in low‐molecular‐weight oligomers. They were completely soluble and amorphous, with glass‐transition temperatures varying from 165 to 266 °C, and they had thermooxidative stability, with samples displaying 5% weight loss temperatures of 419–511 °C in nitrogen. The thermal properties of the monomers and resultant polymers dramatically depended on the polarity of the substituents. The monomers and resultant oligomers displayed high fluorescence in tetrahydrofuran solutions and N‐methyl‐2‐pyrrolidinone solutions, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6465–6479, 2005  相似文献   

10.
A novel preconcentration/separation approach, which online combined CZE with CD‐modified MEKC, was developed for simultaneous enhancing resolving power and detection sensitivity. CZE with cation‐selective exhaustive injection and transient ITP preconcentration was used as the first dimension, from which the effluent fractions were further analyzed by CD‐modified MEKC acting as the second dimension. As the key to successful integration of CZE with MEKC, a new interface was designed and electroaccumulation focusing strategy was employed to avoid analyte band diffusion at the interface. The comprehensive 2‐D system was successfully established with only one high voltage and four electrodes. The grouping of two orthogonal separation techniques, together with analytes preconcentration techniques, significantly enhanced resolution and sensitivity for 2‐D separation of cationic compounds. The resulting electrophoregram was quite different from that of either single CZE or MEKC. Up to 14 000‐ to 35 000‐fold improvement in sensitivity was obtained relative to conventional electrokinetic injection method. The limits of detection (S/N=3) were in the range of 0.03–0.1 μg/L. The number of theoretical plates was in the range of 103 000–184 000. This method was successfully applied to the analysis of trace cationic cardiovascular drugs in wastewater.  相似文献   

11.
Summary The separation of diastereoisomers from oligomers of low molecular weight polystyrene was achieved using a carbon clad zirconia stationary phase and an acetonitrile mobile phase. The selectivity of the C18-methanol system separated the polystyrene oligomers based on molecular weight while the carbon clad zirconia surface in combination with an acetonitrile mobile phase allowed the expression of the isomeric sample dimensionality. Consequently, full utilisation of the different retention mechanisms on each surface greatly improved the isomeric separation from oligomers of low molecular weight polystyrene.  相似文献   

12.
In this work, an automated 2D‐LC approach for protein isolation from egg samples on preparative scale is proposed. The method is based on the use of a C18 guard column installed in a switching valve to focus the proteins coming from the first dimension column, before their elution in the second column. For the first dimension separation, a size‐exclusion column, packed with 3 μm ultrapure silica particles was used. An RP column based on core‐shell technology was used for the second dimension separation. A standard mixture of BSA, β‐lactoglobulin, and glucose oxidase, chosen as a protein model system, was used to optimize the chromatographic separation conditions. The fully automated workflow allowed to isolate, in a single‐chromatographic analysis, a protein amount of 50 μg for each peak fraction, with a total time of 15 min for the first separation and additional 30 min of the second separation for each trapped protein. The final aim was the development of proper analytical tools for protein isolation from foodstuffs to be used for the molecular identification by MS, as well as for biotherapeutic uses, allergy testing, and large‐scale investigations in biological systems.  相似文献   

13.
The separation selectivity of octadecyl-silica (C18) and of bonded pentafluorophenylpropyl-silica (F5) and PEG-silica columns was compared for natural phenolic antioxidants. The separation selectivities for phenolic antioxidants on C18 and F5 columns are strongly correlated, but low selectivity correlation indicating strong differences in the retention mechanism was observed between the C18 and PEG columns. Hence, the combination of a C18 and a PEG column is useful for separation of phenolic antioxidants that are not fully separated on single columns. Two-dimensional comprehensive liquid chromatography using a short PEG-silica column in the first dimension and a conventional C18-silica in the second dimension has the advantage of on-column focusing of the fractions transferred onto the C18 column in the second dimension, as a weaker mobile phase is used in the first dimension than in the second dimension. However, a stop-flow set-up in the first dimension system is necessary after the transfer of each fraction to the second dimension. Peak capacity is considerably larger but the separation time is much longer than with serially coupled PEG and C18 columns, which were employed for separation of beer and hop extract samples in connection with coulometric detection.  相似文献   

14.
Preliminary results of 2‐D separation of test dye mixture using high‐performance thin‐layer chromatography (HPTLC) and pressurized planar electrochromatography (PPEC) are demonstrated. The advantage of 2‐D HPTLC/PPEC separation is based on different separation selectivities obtained in both HPTLC and PPEC systems. HPTLC RP18 W plates of 5×20 cm from Merck were used in the investigations. In the first dimension, a HPTLC process was performed using 5 cm length of the plate and in the second dimension PPEC separation was obtained applying plate of 20 cm length. PPEC process followed prewetting the chromatographic plate with sample zones on it, which were partly separated after first dimensional (HPTLC) separation. In the experiments, the modified version of PPEC device for 20 cm long chromatographic plate and the reservoir for prewetting the adsorbent layer were applied.  相似文献   

15.
A novel heart‐cutting two‐dimensional liquid chromatography coupled with tandem mass spectrometry method was developed for quantitative analysis of pendimethalin residue in tobacco. The strategy of reversed phase liquid chromatography coupled with another reversed‐phase liquid chromatography was employed for high column efficiency and excellent compatibility of mobile phase. In the first dimensional chromatography, a cyano column with methanol/water as the eluent was applied to separate pendimethalin from thousands of interference components in tobacco. By heart‐cutting technique, which effectively removed interference components, the target compound was cut to the second dimensional C18 column for further separation. The pendimethalin residue was finally determined by the tandem mass spectrometry under multiple reaction monitoring reversed‐phase liquid chromatography mode. Sample pretreatment of the new method was simplified, involving only extraction and filtration. Compared with traditional methodologies, the new method showed fairly high selectivity and sensitivity with almost no matrix interference. The limit of quantitation for pendimethalin was 1.21 ng/mL, whereas the overall recoveries ranged from 95.7 to 103.3%. The new method has been successfully applied to non‐stop measure of 200 real samples, without contamination of ion source. Detection results of the samples agreed well with standard method.  相似文献   

16.
In a context of environmental preservation, purification and conversion of heavy petroleum cuts into high‐quality fuel becomes essential. The interest for the characterization of those very complex matrices becomes a trendy analytical challenge, when it comes to get molecular information for the optimization of industrial processes. Among new analytical techniques, high‐temperature 2‐D GC has recently proved its applicability to heavy petroleum matrices, but lacks in selectivity to separate all chemical groups. To gain resolution, heart cutting is demonstrated for LC separation of saturated, aromatic and polar compounds prior to high‐temperature 2‐D GC. Therefore, an extended global resolution was obtained, especially by a better distinction of saturated compounds. This includes iso‐paraffins and biomarker polynaphthenic structures, which are impossible to quantify with MS methods. This new way to analyze heavy petroleum fractions gives innovative opportunities for the construction of global weight distributions by carbon atoms number and by chemical families. This can right now be employed for quantitative analysis of heavy petroleum fractions and for studying conversion processes.  相似文献   

17.
Two multidimensional HPLC separations of an Australian red wine are presented, >70% of the available separation space was used. A porous graphitic carbon (PGC) stationary phase was used as the first dimension in both separations with both RP core–shell and hydrophilic interaction chromatography fully porous columns used separately in the second dimension. To overcome peak analysis problems caused by signal noise and low detection limits, the data were pre‐processed with penalised least‐squares smoothing. The PGC × RP combination separated 85 peaks with a spreading angle of 71° and the PGC × hydrophilic interaction chromatography separated 207 peaks with a spreading angle of 80°. Both 2D‐HPLC steps were completed in 76 min using a comprehensive stop‐and‐go approach. A smoothing step was added to peak‐picking processes and was able to greatly reduce the number of false peaks present due to noise in the chromatograms. The required thresholds were not able to ignore the noise because of the small magnitude of the peaks; 1874 peaks were located in the non‐smoothed PGC × RP separation that reduced to 227 peaks after smoothing was included.  相似文献   

18.
In comprehensive two‐dimensional gas chromatography, two individual separations are coupled by means of a rotating thermal desorption modulator interface. The injection pulse introduced via the interface onto the second column should be as short as possible. Parameters affecting the modulator operation are studied. In the set‐up used in this study, the temperature of the second column can be programmed independently from that of the first column. Optimization of the second‐dimension separation to minimize peak broadening and maximize resolution is discussed and an elegant approach to determine second‐dimension retention times using a non‐constant modulation frequency is demonstrated. The high separation power of the comprehensive system is demonstrated by the analysis of technical and biota samples containing chlorinated biphenyls and toxaphene.  相似文献   

19.
Hydrophobic‐hydrophilic monolithic dual‐phase plates have been prepared by a two‐step polymerization method for two‐dimensional thin‐layer chromatography of low‐molecular‐weight compounds, namely, several dyes. The thin 200 μm poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) layers attached to microscope glass plates were prepared using a UV‐initiated polymerization method within a simple glass mold. After cutting and cleaning the specific area of the layer, the reassembled mold was filled with a polymerization mixture of butyl methacrylate and ethylene dimethacrylate and subsequently irradiated with UV light. During the second polymerization process, the former layer was protected from the UV light with a UV mask. After extracting the porogens and hydrolyzing the poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) area, these two‐dimensional layers were used to separate a mixture of dyes with great difference in their polarity using reversed‐phase chromatography mode within the hydrophobic layer and then hydrophilic interaction chromatography mode along the hydrophilic area. In the latter dimension only the specific spot was developed further. Detection of the separated dyes could be achieved with surface‐enhanced Raman spectroscopy.  相似文献   

20.
Block copolymers of ethylene oxide and ε‐caprolactone were synthesized by microwave‐assisted polymerization of ε‐caprolactone with polyethylene glycol monomethyl ethers as initiator. The samples thus obtained were characterized by two‐dimensional liquid chromatography with liquid chromatography at critical conditions as the first and liquid exclusion adsorption chromatography as the second dimension. A full baseline separation of all oligomers could be achieved in both dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号