首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical study for electromagnetothermoelastic behaviors of a hollow cylinder composed of functionally graded piezoelectric material (FGPM), placed in a uniform magnetic field, subjected to electric, thermal and mechanical loads are presented. For the case that the electric, magnetic, thermal and mechanical properties of the material obey an identical power law in the radial direction, exact solutions for electric displacement, stresses, electric potential and perturbation of magnetic field vector in the FGPM hollow cylinder are determined by using the infinitesimal theory of electromagnetothermoelasticity. Some useful discussions and numerical examples are presented to show the significant influence of material inhomogeneity, and adopting a certain value of the inhomogeneity parameter β and applying suitable electric, thermal and mechanical loads can optimize the FGPM hollow cylindrical structures. This will be of particular importance in modern engineering design.  相似文献   

2.
Thermoelasticity problem in a thick-walled cylinder is solved analytically using the finite Hankel transform. Time-dependent thermal boundary conditions are assumed to act on the inner surface of the cylinder. For the mechanical boundary conditions two different cases are assumed: Traction–displacement problem (traction is prescribed on the inner surface and the fixed displacement boundary condition on the outer one) and Traction–Traction problem (tractions are prescribed on both the inner and outer surfaces of the hollow cylinder). The quasi-static solution of the thermoelasticity problem is derived analytically, i.e., the transient thermal response of the cylinder is derived and then, quasi-static structural problem is solved and closed form relations are extracted for the thermal stresses in the two problems. The results show to be in accordance with that cited in the literature in the special cases.  相似文献   

3.
In this paper, the wave propagation and transient response of an infinite functionally graded plate under a point impact load in thermal environments are studied. The thermal effects and temperature-dependent material properties are taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varies in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Considering the effects of transverse shear deformation and rotary inertia, the governing equations of the wave propagation in the functionally graded plate are derived from Hamilton’s principle. The analytic dispersion relation of the functionally graded plate is obtained by means of integral transforms and a complete discussion of dispersion for the functionally graded plate is given. Using the dispersion relation and integral transforms, exact integral solutions of the functionally graded plate under a point impact load in thermal environments are obtained. The influences of the volume fraction distributions and temperature field on the wave propagation and transient response of functionally graded plates are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and provide a theoretical basis for engineering applications.  相似文献   

4.
The present investigation deals with an undulating surface model for the motility of bacteria gliding on a layer of non‐Newtonian slime. The slime being the viscoelastic material is considered as a power‐law fluid. A hydrodynamical model of motility involving an undulating cell surface which transmits stresses through a layer of exuded slime to the substratum is examined. The non‐linear differential equation resulting from the balance of momentum and mass is solved numerically by a finite difference method with an iteration technique. The manner in which the various exponent values of the power‐law flow affect the structure of the boundary layer is delineated. A comparison is made of the power‐law fluid with the Newtonian fluid. For the power‐law fluid with respect to different power‐law exponent values, shear‐thinning and shear‐thickening effects can be observed, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
This article attempts to study the stochastic coupled thermo-elasticity of thick hollow cylinders subjected to thermal shock loading considering uncertainty in mechanical properties. The thermo-elastic governing equations based on Green–Naghdi theory (without energy dissipation) are stochastically solved using a hybrid numerical method (combined Galerkin finite element and Newmark finite difference methods). The mechanical properties are considered as random variables with Gaussian distribution, which are generated using Monte Carlo simulation method with various coefficients of variations (COVs). The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in detail. Also, the maximum, mean and variance of temperature, displacement and stresses are illustrated across thickness of cylinder in various times.  相似文献   

6.
基于材料体积不可压假设,对轴向压缩作用下圆柱试件在加载面内的环向和径向应力分布进行理论分析,计算结果表明:当试件材料本构为正交各向异性时,环向和径向应力分布为半径的幂函数形式;试件材料为横观各向同性时,环向和径向应力为半径的二次函数.在圆柱试件轴线上环向和径向应力相等,且均具有最大值;试件圆周边界上径向应力为0,环向应力具有极小值.通过最大拉伸应变破坏理论对试件环向应变进行分析,获得了产生环向拉伸破坏时的临界轴向载荷;并采用Hill-蔡强度理论对试件圆周边界上计算得到的应力参量进行描述,得到了轴压作用下圆柱试件的Hill-蔡强度理论表达式,其不仅取决于轴向应力和试件材料的基本力学性能,还与试件轴向变形的应变率及应变率随时间的变化率相关.  相似文献   

7.
Heat transfer of a power‐law non‐Newtonian incompressible fluid in channels with porous walls has not been carefully studied using a proper numerical method despite a few constructions of approximate analytic solutions through the similarity transformation and perturbation method for Newtonian fluids (i.e. power‐law index being one). In this paper, we propose a finite element method for the thermal incompressible flow equations. The incompressible condition is treated by a penalty formulation. Numerical solutions are validated by comparing them with an approximate analytic solution of the Navier–Stokes equation in the Newtonian fluid case. Then, the method is used to simulate the heat transfer of various power‐law fluids. Additionally, unlike previous studies, we allow the thermal diffusivity to be a function of temperature gradient. The effect of different values of the parameters on the temperature and velocity is also discussed in this paper. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Nonlinear transient thermal stress and elastic wave propagation analyses are developed for hollow thick temperature-dependent FGM cylinders subjected to dynamic thermomechanical loads. Stress wave propagation, wave shape distortion, and speed variation under impulsive mechanical loads in thermal environments are also investigated. In contrast to researches accomplished so far, a second-order formulation rather than a first-order one is employed to improve the accuracy. The FDM method (as a point-collocation FEM method) is used. It is known that other FEM methods cannot show the actual trend jumps due to distributing the abrupt changes in the quantities as the numerical errors and the residuals of the governing equations among the nodal results. Furthermore, the required computational time and allocated computer memory are much reduced by the present solution algorithm. The cylinder is not divided into isotropic sub-cylinders. Therefore, artificial wave reflections from the hard interfaces are avoided. Time variations of the temperatures, displacements, and stresses due to the dynamic or impulsive loads are determined by solving the resulted highly nonlinear governing equations using an iterative updating solution scheme. A sensitivity analysis includes effects of the volume fraction indices, dimensions, and temperature-dependency of the material properties is performed. Results reveal the significant effect of the temperature-dependency of the material properties on the thermoelastic stresses and present some interesting characteristics of the thermoelastic and wave propagation behaviors.  相似文献   

9.
In this paper, the general theoretical analysis for a hollow cylinder made of functionally graded piezoelectric material subjected to two-dimensional electromechanical load, is developed. The material properties, except the Poisson’s ratio, are assumed to vary with the power law function through the thickness of the cylinder. The mechanical and electrical displacements are assumed to be a function of radial and circumferential directions. By using the separation of variables method and complex Fourier series, the Navier equations in terms of displacements are derived and solved.  相似文献   

10.
In the present paper, an estimation is made to investigate the transient phenomena in magneto-thermoelastic model in the context of the theory of generalized thermoelasticity LS model with variable thermal conductivity. FEM is proposed to analyze the problem and obtain the numerical solutions for the displacement, temperature, and radial and hoop stresses. The boundary conditions for the mechanical and Maxwell’s stresses at the internal and outer surfaces is considered. An application of an infinitely long annular cylinder is investigated for the inner surface is traction free and subjected to thermal shock, while the outer surface is traction free and thermally isolated. Finally, the displacement, incremental temperature, the stress components are obtained and then presented graphically.  相似文献   

11.
《Applied Mathematical Modelling》2014,38(19-20):4625-4639
In this paper, the magneto-thermo-mechanical response of a functionally graded magneto-elastic material (FGMM) annular variable-thickness rotating disk is investigated. The material properties namely material stiffness, heat conduction coefficient, thermal expansion coefficient, mass density and magnetic permeability are assumed to vary continuously along the radial direction according to a power law. The thickness profile of the disk placed in a uniform magnetic field and subjected to the thermal load is assumed to be hyperbolic in nature. The effects of the magnetic field, grading index and geometric nonlinearity on the mechanical and thermal stresses of the disk are investigated. For a specific value of the grading index the maximum radial stress due to magneto-mechanical load in a mounted FGMM disk with hyperbolic convergent profile is found away from the center. This result is different from other thickness profile disks where the radial stresses are always at the center. It is observed that unlike radial stress in a mounted FGM disk subjected to mechanical load only where it is always tensile, the radial stress due to magneto-thermal load in a mounted FGMM disk can be both tensile and compressive type. It is seen that a decrease in the value of grading index invokes shifting of the location of the maximum temperature in FGMM disk with hyperbolic convergent profile towards the outer surface of the disk.  相似文献   

12.
Nonhomogeneous Poisson processes (NHPPs) are often used to model failure data from repairable systems, and there is thus a need to check model fit for such models. We study the problem of obtaining exact goodness‐of‐fit tests for parametric NHPPs. The idea is to use conditional tests given a sufficient statistic under the null hypothesis model. The tests are performed by simulating conditional samples given the sufficient statistic. Algorithms are presented for testing goodness‐of‐fit for the power law and the log‐linear law NHPP models. It is noted that while exact algorithms for the power law case are well known in the literature, the availability of such algorithms for the log‐linear case seems to be less known. A data example, as well as simulations, are considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The closed-form exact solution for the hygrothermal response of inhomogeneous piezoelectric hollow cylinders is obtained. The interaction of electric potentials, electric displacement and elastic deformations is presented. The present cylinder is subjected to both a mechanical load and an electric potential. The material properties coefficients of the present cylinder are assumed to be changed in the radial direction by different distribution forms. The field quantities like displacement, stresses and electric potentials in the inhomogeneous piezoelectric cylinders are determined. The significant of influences of material inhomogeneity, initial temperature, final moisture, and the load and electric ratios in the field quantities are investigated. The concluding remarks and suitable discussions are made.  相似文献   

14.
Magnetothermoelastic creep behavior of thick-walled spheres made of functionally graded materials (FGM) placed in uniform magnetic and distributed temperature fields and subjected to an internal pressure is investigated using method of successive elastic solution. The material creep, magnetic and mechanical properties through the radial graded direction are assumed to obey the simple power law variation. Using equations of equilibrium, stress-strain and strain-displacement a differential equation, containing creep strains, for displacement is obtained. A semi-analytical method in conjunction with the Mendelson’s method of successive elastic solution has been developed to obtain history of stresses and strains. History of stresses, strains and effective creep strain rate from their initial elastic distribution at zero time up to 55 years are presented in this paper. Stresses, strains and effective creep strain rate are changing in time with a decreasing rate so that after almost 50 years the time-dependent solution approaches the steady state condition when there is no distinction between stresses and strains at 50 and 55 years.  相似文献   

15.
A hybrid meshless technique based on composition of meshless local Petrov–Galerkin method (for spatial variables) and Newmark finite difference method (for time domain) is developed for natural frequencies analysis of thick cylinder made of functionally graded materials (FGMs). The FG cylinder is assumed to be under suddenly thermal loading, axisymmetric and plane strain conditions. The dynamic behaviors and time history of displacements are obtained in time domain using Green–Naghdi (GN) theory of coupled thermo-elasticity (without energy dissipation). Using fast Fourier transform (FFT) technique, the displacements are transferred to frequency domain and all natural frequencies are illustrated for various grading patterns of FGMs. The variations of mechanical properties in FG thick hollow cylinder are considered to be in nonlinear volume fraction law through radial direction. The presented hybrid meshless technique furnishes a ground to analyze the effects of various grading patterns of FGMs on natural frequencies, which are obtained employing GN coupled thermo-elasticity governing equations. Also, the frequency history and natural frequencies are illustrated for various grading patterns at several points across thickness of cylinder.  相似文献   

16.
An analytical method is presented to investigate thermo-magneto-elastic stresses and perturbation of the magnetic field vector in a conducting non-homogeneous hollow cylinder under thermal shock. The interaction between the deformation and the magnetic field vector in a non-homogeneous hollow cylinder is considered by adding a Lorentz’s electro-magneto-force into the equation of thermo-elastic motion of the non-homogeneous hollow cylinder in an axial magnetic field. The exact solution for magneto-thermo-dynamic stresses and perturbation responses of an axial magnetic field vector in a conducting non-homogeneous hollow cylinder was obtained by using finite integral transforms. From numerical calculations, the dynamic characteristics on both thermo-magneto-stresses and perturbation of the axial magnetic field vector in the conducting non-homogeneous hollow cylinder is revealed and discussed.  相似文献   

17.
The group theoretic method is applied for solving problem of combined magneto-hydrodynamic heat and mass transfer of non-Darcy natural convection about an impermeable horizontal cylinder in a non-Newtonian power law fluid embedded in porous medium under coupled thermal and mass diffusion, inertia resistance, magnetic field, thermal radiation effects. The application of one-parameter groups reduces the number of independent variables by one and consequently, the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The ordinary differential equations are solved numerically for the velocity using shooting method. The effects of magnetic parameter M, Ergun number Er, power law (viscosity) index n, buoyancy ratio N, radiation parameter Rd, Prandtl number Pr and Lewis number Le on the velocity, temperature fields within the boundary layer, heat and mass transfer are presented graphically and discussed.  相似文献   

18.
Stresses in the vicinity of free edges and corners of composite laminates exhibit a distinct localized three‐dimensional behaviour [1] and thus represent an important technical situation. Since numerical analyses of stress concentration phenomena in layered structures are computationally expensive, the present contribution is devoted to a simple closed‐form higher‐order theory approach for the calculation of displacements, strains and stresses in the vicinity of a rectangular corner of symmetric cross‐ply laminates under uniform thermal load ΔT. An appropriate representation for the displacement field in the form of a single‐layer theory with unknown inplane components and appropriately assumed functions through the plate thickness yields closed‐form expressions for the strains and stresses throughout the whole laminate. Equilibrium and boundary conditions are fulfilled in an integral sense. The present approach is easily applied, is of a completely closed‐form analytic nature and requires only little computational effort. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Summary There is presently considerable interest in the utilization of microwave heating to novel industrial applications. Mathematically such problems involve Maxwell's equations coupled with the heat equation and for which all thermal, electrical and magnetic properties of the material are nonlinearly dependent upon temperature. Accordingly such problems are highly complex and very little theoretical work has been undertaken. The purpose of this paper is to obtain simple exact solutions applicable to microwave heating in the simplest situation, involving only one spatial dimension and assuming that all thermal, electrical and magnetic properties exhibit a power law dependence on temperature. Similarity solutions and other special solutions are examined. These generally result in highly nonlinear coupled systems of ordinary differential equations and although some new closed results are obtained in special cases, in general, such complex systems of ordinary differential equations need to be solved numerically. Roughly speaking, we show that stretching similarity solutions exist only if the power law electrical and thermal conductivities and magnetic permeability with indicesl, m andn respectively are such thatl+m+n=0. Similar constraints on the indices apply for the existence of other simple solutions.  相似文献   

20.
The total transient entropy generation of a system that consists of a liquid vortex within a hollow cylinder as a heat source is investigated in this article. The hollow cylinder insulates the liquid vortex, and generates an air vacuum above the vortex which raises its level within the cylinder. The liquid vortex, at a volume of 20% and 60%, partially fills the hollow cylinder. In both cases, the heat transfer was partially established between the inner surface of the hollow cylinder and the vortex liquid. This analysis focused on the transient exchange of entropy generation between the cylinder and fluid. The heat exchange between the hollow heated cylinder and the fluids takes 15 s. The analysis of entropy generated includes only thermal irreversibility of this system; hydraulic irreversibility is neglected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号