首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Bouhroum  S.  Arnaud-Neu  F.  Asfari  Z.  Vicens  J. 《Russian Chemical Bulletin》2004,53(7):1544-1548
The binding properties of two thiacalix[4]arene-bis-crown[n] derivatives (n = 5 and 6) were examined through extraction experiments. The stability constants of the resulting complexes in methanol were determined. The replacement of the bridging CH2 groups by sulfur atoms leads to a strong decrease in both extraction and complexation levels of alkali metal ions but does not affect the selectivity within the series of crown ethers. The stability of complexes with heavy metal ions does not change markedly on passing from thiacalix[4]arene-bis-crown[n] ethers to their calix[4]arene-bis-crown[n] counterparts; therefore no clear-cut conclusions about the possible interactions between these cations and the sulfur atoms can be drawn.  相似文献   

2.
A systematic study of cation-pi interactions between alkali metal ions and the cyclopentadienyl ring of ferrocene is presented. The alkali metal (Li+, Na+, K+, Rb+, Cs+) salts of the ditopic mono(pyrazol-1-yl)borate ligand [1,1'-fc(BMe2pz)2]2- crystallize from dimethoxyethane as multiple-decker sandwich complexes with the M+ ions bound to the pi faces of the ferrocene cyclopentadienyl rings in an eta5 manner (fc = (C5H4)2Fe; pz = pyrazolyl). X-ray crystallography of the lithium complex reveals discrete trimetallic entities with each lithium ion being coordinated by only one cyclopentadienyl ring. The sodium salt forms polyanionic zigzag chains where each Na+ ion bridges the cyclopentadienyl rings of two ferrocene moieties. Linear columns [-CpR-Fe-CpR-M+-CpR-Fe-CpR-M+-](infinity) (R = [-BMe2pz]-) are established by the K+, Rb+, and Cs+ derivatives in the solid state. According to DFT calculations, the binding enthalpies of M+-eta5(ferrocene) model complexes are about 20% higher as compared to the corresponding M+-eta6(benzene) aggregates when M+ = Li+ or Na+. For K+ and Rb+, the degree of cation-pi interaction with both aromatics is about the same. The binding sequence along the M+-eta5(ferrocene) series follows a classical electrostatic trend with the smaller ions being more tightly bound.  相似文献   

3.
The effects of alkali metals (Na+,K+) on the exchange degree of Hβ zeolite under different conditions and the conversion of α(or β)-methylnaphthalene over the alkalized zeolites were studied. The results showed that the H+ of Hβ zeolite is totally replaced by the Na+ of NaCl solution, while partially exchanged by the K+ of KC1 solution, there is an exchange equilibrium between the H+ and K+ for Hβ zeolite (Si/Al=17.23) and the value of equilibrium is 88.39. The exchange degree also increases with increasing the Si/Al of the samples. It was suggested that these resluts are attributed to the electrostatic field in the pore of Hβ zeolite and the nature of zeolite and the properties of alkali metal. The isomerization of α(or β)-methylnaphthalene is the main reaction over the samples and it is more favour on the proper acid-base sites of KHβ zeolite.  相似文献   

4.
The feasibility of solid‐state magic angle spinning (MAS) 31P nuclear magnetic resonance (NMR) spectroscopy and 23Na NMR spectroscopy to investigate both phosphates and Na+ ions distribution in semi‐hard cheeses in a non‐destructive way was studied. Two semi‐hard cheeses of known composition were made with two different salt contents. 31P Single‐pulse excitation and cross‐polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively ‘mobile’ fraction of colloidal phosphates was evidenced. The detection by 23Na single‐quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of ‘bound’ sodium ions was evidenced by 23Na double‐quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na+ ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The high-temperature phases of the alkali-metal oxalates M2[C2O4] (M = K, Rb, Cs), and their decomposition products M2[CO3] (M = K, Rb, Cs), were investigated by fast, angle-dispersive X-ray powder diffraction with an image-plate detector, and also by simultaneous differential thermal analysis (DTA)/thermogravimetric analysis (TGA)/mass spectrometry (MS) and differential scanning calorimetry (DSC) techniques. The following phases, in order of decreasing temperature, were observed and crystallographically characterized (an asterisk denotes a previously unknown modification): *alpha-K2[C2O4], *alpha-Rb2[C2O4], *alpha-Cs2[C2O4], alpha-K2[CO3], *alpha-Rb2[CO3], and *alpha-Cs2[CO3] in space group P6(3)/mmc; *beta-Rb2[C2O4], *beta-Cs2[C2O4], *beta-Rb2[CO3], and *beta-Cs2[CO3] in Pnma; gamma-Rb2[C2O4], gamma-Cs[C2O4], gamma-Rb2[CO3], and gamma-Cs2[CO3] in P2(1)/c; and delta-K2[C2O4] and delta-Rb2[C2O4] in Pbam. With respect to the centers of gravity of the oxalate and carbonate anions, respectively, the crystal structures of all known alkali-metal oxalates and carbonates belong to the AlB2 family, and adopt either the AlB2 or the Ni2In arrangement depending on the size of the cation and the temperature. Despite the different sizes and constitutions of the carbonate and oxalate anions, the high-temperature phases of the alkali-metal carbonates M2[CO3] (M = K, Rb, Cs), exhibit the same sequence of basic structures as the corresponding alkali-metal oxalates. The topological aspects and order-disorder phenomena at elevated temperature are discussed.  相似文献   

6.
The local structure in crystals, melts, supercooled melts, and glasses of sodium silicate hydrates of composition Na2O · SiO2 · nH2O (n = 9, 6, 5) is studied by variable temperature 1H, 23Na, and 29Si MAS NMR spectroscopy. Detailed in situ investigations on the melting process of the crystalline materials reveal the importance of H2O motion in the melting mechanism. Depending on the local coordination, crystallographically distinct Na sites show different behaviour during the melting process. Upon melting, the monomer silicate anions present in the crystalline hydrates undergo condensation reactions to oligomeric silicate anions. No recrystallization but glass formation occurs at low temperature if the melts were heated initially about 10 K above the melting point. In the glasses also oligomeric silicate anions are present with a preference for cyclotrimer species. In situ MAS NMR investigations and electric conductivity measurements of the melts, supercooled melts, and glasses suggest the distinction of three temperature ranges characterized by different local structure and dynamics of the sodium cations, water and silicate anions. These ranges comprise a glass and glass transition range A at low temperatures, an aggregation region B at intermediate temperatures, and a solution or electrolyte region C at high temperatures. In region B aggregation of sodium water complexes to hydrated polycation clusters is suggested, the dynamic behaviour of which is clearly different to that of the silicate anions, indicating that no long-lived contact ion pairs between sodium cations and silicate anions are formed.  相似文献   

7.
Chemical shift assignment of seven N‐substituted 6‐(4‐methoxyphenyl)‐7H‐pyrrolo[2, 3‐d]pyrimidin‐4‐amines, six of which are fluorinated, have been performed based on 1H, 13C, 19F, and 2D COSY, HMBC and HSQC experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Five 5-substituted-4-(arylidene)amino-2,4-dihydro-3H-1, 2,4-triazole-3-thiones (2a-2e) and seven 6-aryl-3-(D-gluco-pentitol-1-yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines (3a-3g) were synthesized. The complete 1H and 13C NMR chemical shift assignments were analyzed on one- and two-dimensional NMR techniques, including DEPT, NOE-DIF, COSY, gHMBC, and gHSQC.  相似文献   

9.
Various [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐thiones were synthesized in high yields by treatment of the corresponding [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐ones with Lawesson's reagent. Detailed NMR spectroscopic studies were undertaken of the title compounds. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H) was achieved by the combined application of various one‐ and two‐dimensional (1D and 2D) NMR spectroscopic techniques. Unequivocal mapping of most 13C,1H spin coupling constants is accomplished by 2D (δ, J) long‐range INEPT spectra with selective excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Vibrational spectra of the compounds M4E4 (M = K, Rb, Cs; E = Ge, Sn) and of β‐Na4Sn4 with the cluster anions [E4]4? were analysed based on the point group of isolated tetrahedranide units. The lower individual symmetry of the anions in the real structure being more patterned and complex primarily affects the spectra of the tetrahedro‐tetragermanides. ν3(F2) clearly splits both in Raman and IR and in the case of K4Sn4 only in IR. Rb4Sn4 and Cs4Sn4 exhibit very simple spectra with three bands in Raman and one band in IR. The breathing mode ν1(A1) for the quasi isolated [E4]4? cluster appears only in the Raman spectrum and is hardly influenced by the structural environment and by the nature of the alkali metal cations: ν1(A1) = 274 cm?1 ([Ge4]4?) and 183‐187 cm?1 ([Sn4]4?), respectively. The calculated valence force constants fd(E–E) are: [Ge4]4? : fd = 0.89 Ncm?1 ( K ), 0.87 Ncm?1 ( Rb ), 0.86 Ncm?1 ( Cs ) and [Sn4]4? : 0.67 Ncm?1 ( Na ), 0.66 Ncm?1 ( K ), 0.67 Ncm?1 ( Rb ), 0.68 Ncm?1 ( Cs ). Both, the frequencies and the force constants fit well into the range previously reported.  相似文献   

12.
As previously shown, alkali and alkaline earth metal iodides in nonaqueous, aprotic solvents behave like transition metal halides, forming cis- and trans-dihalides with various neutral O-donor ligands. These compounds can be used as precursors for the synthesis of new mixed alkali/alkaline earth metal aggregates. We show here that Ln2+ ions form isostructural cluster compounds. Thus, with LiOtBu, 50% of the initial iodide can be replaced in MI2, M=Ca, Sr, Ba, Eu, to generate the mixed-metal alkoxide aggregates [IM(OtBu)4{Li(thf)}4(OH)], for which the M--OH contacts were investigated by theoretical methods. With M'OPh (M'=Li, Na), a new mixed-metal aryloxide cluster type [MM'6(OPh)8(thf)6] is obtained for M=Ca, Sr, Ba, Sm, Eu. Their stability versus DME (DME=1,2-dimethoxyethane) as bidentate ligand is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号