首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selectivity of Crystalline CeIV Phosphate Sulphate Hydrates for Li+, Na+, K+, Rb+, Cs+, and NH in Absolute Methanol and Absolute Dimethylsulphoxide The sequence of exchange capacities of Cerium(IV) phosphate sulphate hydrate (CePO4)2(HPO4)0.74(SO4)0.26 · 4,74 H2O for alkalimetal ions and ammoniumions in absolute methanol at 25°C for the case of a small excess of the exchanger (in relation to the equivalent amount) is given by K+ > Rb+ ≥ NH4+ > Cs+ > Na+ > Li+. Between the exchange capacity A of these cations and their ionic radii r (given by Ladd) exists the simple relation A = const./r. For Na+ the radius of the inner hydration shell must be considered. In absolute dimethyl-sulphoxide under the same conditions the sequence is K+ ≥ NH4 > Rb+ > Na+ > Cs+ > Li+. For K+, NH4, Rb+ and Cs+ the exchange capacity is given by A = const./r + const. · r4. The sequences of the alkali ions in both solvents are among the group of 13 sequences which are physicaly significant according to EISENMANNS 's theory. The results are compared with the observations made with water as solvent.  相似文献   

2.
The facilitated transfer of alkali metal ions (Na+, K+, Rb+, and Cs+) by 25,26,27,28‐tetraethoxycarbonylmethoxy‐thiacalix[4]arene across the water/1,2‐dichloroethane interface was investigated by cyclic voltammetry. The dependence of the half‐wave transfer potential on the metal and ligand concentrations was used to formulate the stoichiometric ratio and to evaluate the association constants of the complexes formed between ionophore and metal ions. While the facilitated transfer of Li+ ion was not observed across the water/1,2‐dichloroethane interface, the facilitated transfers were observed by formation of 1 : 1 (metal:ionophore) complex for Na+, K+, and Rb+ ions except for Cs+ ion. In the case of Cs+ a 1 : 2 (metal:ionophore) complex was obtained from its special electrochemical response to the variation of ligand concentrations in the organic phase. The logarithms of the complex association constants, for facilitated transfer of Na+, K+, Rb+, and Cs+, were estimated as 6.52, 7.75, 7.91 (log β1°), and 8.36 (log β2°), respectively.  相似文献   

3.
A reverse‐binding‐selectivity between monovalent and divalent cations was observed for two different self‐assembly G16‐hexadecamer and G8‐octamer systems. The dissociation constant between G4‐quadruplex and monomer was calculated via VT‐1H NMR experiments. Quantitative energy profiles revealed entropy as the key factor for the weaker binding toward Ba2+ compared with K+ in the G8‐octamer system despite stronger ion‐dipole interactions. This study is the first direct comparison of the G4‐quartet binding affinity between mono and divalent cations and will benefit future applications of G‐quadruplex‐related research. Further competition experiments between the G8‐octamer and 18‐crown‐6 with K+ demonstrated the potential of this G8 system as a new potassium receptor.  相似文献   

4.
Na-montmorillonites were exchanged with Li+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+, while Ca-montmorillonites were treated with alkaline and alkaline earth ions except for Ra2+ and Ca2+. Montmorillonites with interlayer cations Li+ or Na+ have remarkable swelling capacity and keep excellent stability. It is shown that metal ions represent different exchange ability as follows: Cs+?>?Rb+?>?K+?>?Na+?>?Li+ and Ba2+?>?Sr2+?>?Ca2+?>?Mg2+. The cation exchange capacity with single ion exchange capacity illustrates that Mg2+ and Ca2+ do not only take part in cation exchange but also produce physical adsorption on the montmorillonite. Although interlayer spacing d 001 depends on both radius and hydration radius of interlayer cations, the latter one plays a decisive role in changing d 001 value. Three stages of temperature intervals of dehydration are observed from the TG/DSC curves: the release of surface water adsorbed (36?C84?°C), the dehydration of interlayer water and the chemical-adsorption water (47?C189?°C) and dehydration of bound water of interlayer metal cation (108?C268?°C). Data show that the quantity and hydration energy of ions adsorbed on montmorillonite influence the water content in montmorillonite. Mg2+-modified Na-montmorillonite which absorbs the most quantity of ions with the highest hydration energy has the maximum water content up to 8.84%.  相似文献   

5.
The crystal and molecular structures of a family of three-component radical cation salts bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF), (BEDT-TTF)4M[NP]2, where M = Na+, K+, NH+ 4, Tl+, Rb+, and Cs+and NP is the nitroprusside anion [FeNO(CN)5]2–, are studied by X-ray structure analysis. These salts are isostructural and behave as stable metals down to helium temperatures. Their structures are characterized by radical cation layers of the "-type alternating with layers of complex anions [M+(NP2–)2]3–. The conducting radical cation system and photochromic nitroprusside anion in the crystals were shown to affect each other. On the one hand, this changes the geometric parameters of the nitroprusside anion as compared to those of the Na2[NP] · 2H2O crystals in the ground state and, on the other hand, makes the geometries of the two crystallographically independent BEDT-TTF molecules with a different number of shortened contacts with the anion different. Based on the data of crystallochemical analysis of the (BEDT-TTF)4M[FeNO(CN)5]2structures, we suggest their possible routes of chemical modification with the purpose of changing their physical properties.  相似文献   

6.
Abstract

The Cs+ selectivity of some calix-crown ligands makes them excellent candidates for use in separation systems such as liquid membranes. Separation performance can be understood and predicted from thermodynamic data for cation complexation. We have therefore determined the log K, ΔH and ΔS for the interaction of Na+, K+, Rb+, Cs+ and NH4 + with didodecyl-calix[4]arene-crown-6 in acetonitrile at 25°C by titration calorimetry. The ligand is strongly selective for Cs+, and the selectivity trend results entirely from the enthalpy contribution, with entropy effects opposing the trend. These results are discussed in light of some corresponding data obtained by other researchers with similar ligands.  相似文献   

7.
An equilibrium study concerning the association of Na+, K+, Rb+ and Cs+ with 4, 7, 13, 18-tetraoxa-1,10-diazabicyclo [8, 5, 5]-eicosane [211], 4, 7, 13, 16, 21-pentaoxa-1, 10-diazabicyclo [8, 8, 5]-tricosane [221] and 4, 13-didecyl-1, 7, 10, 16-tetraoxa-4, 13-diazacyclooctadecane [22-DD] in acetonitrile has been carried out at 25 °C by using a conductometric technique. The observed molar conductivity, Λ, of a test solution was found to decrease significantly for mole ratios less than 1:1 upon the addition of the complexing ligand. A model based on 1:1 stoichiometry has been used to analyze the conductivity data. The data have been fitted according to a non-linear least-squares analysis that provides the stability constant, K, and the molar conductivity, Λc, for each cation – ligand inclusion complex. The binding sequences were found to follow the order: Na+ > K+ > Rb+ ≫ Cs+ (K ≈ 0) for [211], Na+ > K+ > Rb+ > Cs+ for [221] and K+ > Na+ > Rb+ > Cs+ for [22-DD] complexes. Trends in ionic conductivities of complexed ions are also discussed.  相似文献   

8.
The energetic and structural optimized of a calix[4]arene with and without alkali-metal cations are presented with performance of various quantum chemical methods such as Hartree--Fock, second order Møller-Plesset perturbation theory, and density functional theory. The geometry optimizations have been carried out with the 3-21G (Li+--Cs+) and 3-21G(d,p) (Li+--K+) and the 3-21G basis sets for Cs+ and Rb+. Additional single-point energy ab initio calculations for Li+–K+ were carried out at HF/6--31G, HF/6-31G (d,p), HF/6--311G(d,p) for complexes of Li+ and Na+. The calculations were carried out to analyze the complexation of calix[4]arene with alkali metal cationic species (Li+, Na+, K+, Rb+, and Cs+). Assumption to isolate the effects of the aromatic core and cation-π interactions. Particular emphasis has been on conformational binding selectivity and the structural characterization of the complexes, the smaller cation as Li+ and Na+ has been placed in the lower rim's of the calix[4]arene's cavity. The large cations like K+, Rb+, and Cs+ take placed in upper rim and the endo (inclusive) complexation is driven by cation-π interactions, that reflect a superior interaction with two phenol rings. The endo complexation of Cs+ with calix[4]arene is in agreement with X-ray diffraction data. The binding modes of calixarene-cation systems are studied to involve cooperative effects between cation-π and electrostatic forces.  相似文献   

9.
A density functional theory based on interaction of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) with cyclic peptides constructed from 3 or 4 alanine molecule (CyAla3 and CyAla4), has been investigated using mixed basis set (C, H, O, Li+, Na+ and K+ using 6-31+G(d), and the heavier cations: Rb+ and Cs+ using LANL2DZ). The minimum energy structures, binding energies, and various thermodynamic parameters of free ligands and their metal cations complexes have been determined with B3LYP and CAM-B3LYP functionals. The order of interaction energies were found to be Li> K> Na> Rb> Cs+ and Li> Na> K? Rb> Cs+, calculated at CAM-B3LYP level for the M/CyAla3 and M/CyAla4 complexes, respectively. Their selectivity trend shows that the highest cation selectivity for Li+ over other alkali metal ions has been achieved on the basis of thermodynamic analysis. The main types of driving force host–guest interactions are investigated, the electron-donating O offers lone pair electrons to the contacting LP* of alkali metal cations.  相似文献   

10.
The equilibrium in the system water—electrolyte—cross-linked polymer containing immobilized 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxycalix[4]arene was studied. Immobilized calixarene 1 was shown to form 1∶1, 1∶2, 1∶3, and 1∶4 compounds with inorganic cations (Na+, Cs+, and NH4 +), and with organic cations (hexamethylen-tetramine and β-diethylaminoethylp-aminobenzoate) 1∶1 compounds are formed. The affinity of immobilized calixarene1 increases in the series of cations: hexamethylenetetramine <Na+, Cs+, NH4 +<β-diethylaminoethylp-aminobenzoate. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2214–2216, November, 1998.  相似文献   

11.
This paper presents results from a series of pulsed field gradient (PFG) NMR studies on lipophilic guanosine nucleosides that undergo cation‐templated assembly in organic solvents. The use of PFG‐NMR to measure diffusion coefficients for the different aggregates allowed us to observe the influences of cation, solvent and anion on the self‐assembly process. Three case studies are presented. In the first study, diffusion NMR confirmed formation of a hexadecameric G‐quadruplex [G 1 ]16 ? 4 K+ ? 4 pic? in CD3CN. Furthermore, hexadecamer formation from 5′‐TBDMS‐2′,3′‐isopropylidene G 1 and K+ picrate was shown to be a cooperative process in CD3CN. In the second study, diffusion NMR studies on 5′‐(3,5‐bis(methoxy)benzoyl)‐2′,3′‐isopropylidene G 4 showed that hierarchical self‐association of G8‐octamers is controlled by the K+ cation. Evidence for formation of both discrete G8‐octamers and G16‐hexadecamers in CD2Cl2 was obtained. The position of this octamer–hexadecamer equilibrium was shown to depend on the K+ concentration. In the third case, diffusion NMR was used to determine the size of a guanosine self‐assembly where NMR signal integration was ambiguous. Thus, both diffusion NMR and ESI‐MS show that 5′‐O‐acetyl‐2′,3′‐O‐isopropylidene G 7 and Na+ picrate form a doubly charged octamer [G 7 ]8 ? 2 Na+ ? 2 pic? 9 in CD2Cl2. The anion's role in stabilizing this particular complex is discussed. In all three cases the information gained from the diffusion NMR technique enabled us to better understand the self‐assembly processes, especially regarding the roles of cation, anion and solvent.  相似文献   

12.
Theoretical studies of 1,3‐alternate‐25,27‐bis(1‐methoxyethyl)calix[4]arene‐azacrown‐5 ( L1 ), 1,3‐alternate‐25,27‐bis(1‐methoxyethyl)calix[4]arene‐N‐phenyl‐azacrown‐5 ( L2 ), and the corresponding complexes M+/ L of L1 and L2 with the alkali‐metal cations: Na+, K+, and Rb+ have been performed using density functional theory (DFT) at B3LYP/6‐31G* level. The optimized geometric structures obtained from DFT calculations are used to perform natural bond orbital (NBO) analysis. The two main types of driving force metal–ligand and cation–π interactions are investigated. The results indicate that intermolecular electrostatic interactions are dominant and the electron‐donating oxygen offer lone pair electrons to the contacting RY* (1‐center Rydberg) or LP* (1‐center valence antibond lone pair) orbitals of M+ (Na+, K+, and Rb+). What's more, the cation–π interactions between the metal ion and π‐orbitals of the two rotated benzene rings play a minor role. For all the structures, the most pronounced changes in geometric parameters upon interaction are observed in the calix[4]arene molecule. In addition, an extra pendant phenyl group attached to nitrogen can promote metal complexation by 3D encapsulation greatly. In addition, the enthalpies of complexation reaction and hydrated cation exchange reaction had been studied by the calculated thermodynamic data. The calculated results of hydrated cation exchange reaction are in a good agreement with the experimental data for the complexes. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
The dibenzo[3n]crown-n were synthesised starting from bis[2-(o-hydroxyphenoxy)ethyl]ether obtained from bis[2-(o-formylphenoxy)ethyl]ether via Baeyer-Villiger oxidation in H2O2/CH3COOH in a good yield. The cyclic condensation ofbis[2-(o-hydroxyphenoxy)ethyl]etherwith tri- and tetraethylene glycol bisdichlorides andthe bisditosylate of pentaethylene glycol in DMF/Me2CO3 afforded the large cyclic ethers of dibenzo[21]crown-7, dibenzo[24]crown-8 and dibenzo[27]crown-9. The structures were analysed with IR, 1H NMR, 13C NMR and low-resolution mass spectroscopy methods. The Na+, K+, Rb+ and Cs+ cations' recognition of the molecules were conducted withsteady-state fluorescence spectroscopy. The 1:1 association constants, Ka, in acetonitrile were estimated. Dibenzo[21]crown-7 was the best both for K+ and Rb+ binding but showed too small an effect on Cs+. Dibenzo[24]crown-8 exhibited the binding power in the order of Rb+ > K+ > Na+ > Cs+. However, dibenzo[27]crown-9 displayed marked binding with only K+ but not with Rb+ or with Cs+ cations probably due to the heavy atom effect of fluorescence quenching.  相似文献   

14.
《Electroanalysis》2005,17(4):319-326
Thallium hexacyanoferrate films have been prepared from various aqueous electrolyte solutions using consecutive cyclic voltammetry. The cyclic voltammograms recorded the direct deposition of thallium hexacyanoferrate films from the mixing of Tl3+ and [Fe(CN)6]3? ions from solutions of seven cations: Li+, Na+, K+, Rb+, Cs+, H+, and Tl+. An electrochemical quartz crystal microbalance (EQCM) and cyclic voltammetry were used to study the in situ growth of the thallium hexacyanoferrate films. The thallium hexacyanoferrate film shows a single redox couple with a formal potential between +0.6 V and +1.2 V, and shows a cation effect (H+, Li+, Na+, K+, Rb+, Cs+, and Tl+). A mixed film and a two‐layered modified electrodes composed of a thallium hexacyanoferrate film with cobalt(II) hexacyanoferrate film were prepared.  相似文献   

15.
The synthesis of a series of m‐terphenyl‐substituted tetrafluorosilicates with different cations (Na+, K+, Rb+, Cs+, Ag+, Tl+) is described and the interactions between the anion and cation are investigated in the solid, solution, and gas states by using multinuclear NMR spectroscopy, X‐ray diffraction, and ion cyclotron resonance Fourier‐transform mass spectrometry (ICR‐FT‐MS). In solution, heteronuclear NMR spectroscopy parameters show only limited sensitivity to the nature of the cation, which furthermore can be affected by solvent effects. More pronounced effects are observed in the structural data obtained from X‐ray diffraction studies, which are in good agreement with experimental gas‐phase data from ESIMS. ESIMS also reveals the existence of dimeric species of the type [M(DmpSiF4)2]? (Dmp=2,6‐dimesitylphenyl), the stability of which was determined by normalized collision energy experiments.  相似文献   

16.
Cationization is a valuable tool to enable mass spectrometric studies on neutral transition‐metal complexes (e.g., homogenous catalysts). However, knowledge of potential impacts on the molecular structure and catalytic reactivity induced by the cationization is indispensable to extract information about the neutral complex. In this study, we cationize a bimetallic complex [AuZnCl3] with alkali metal ions (M+) and investigate the charged adducts [AuZnCl3M]+ by electrospray ionization mass spectrometry (ESI‐MS). Infrared multiple photon dissociation (IR‐MPD) in combination with density functional theory (DFT) calculations reveal a μ3 binding motif of all alkali ions to the three chlorido ligands. The cationization induces a reorientation of the organic backbone. Collision‐induced dissociation (CID) studies reveal switches of fragmentation channels by the alkali ion and by the CID amplitude. The Li+ and Na+ adducts prefer the sole loss of ZnCl2, whereas the K+, Rb+, and Cs+ adducts preferably split off MCl2ZnCl. Calculated energetics along the fragmentation coordinate profiles allow us to interpret the experimental findings to a level of subtle details. The Zn2+ cation wins the competition for the nitrogen coordination sites against K+, Rb+, and Cs+ , but it loses against Li+ and Na+ in a remarkable deviation from a naive hard and soft acids and bases (HSAB) concept. The computations indicate expulsion of MCl2ZnCl rather than of MCl and ZnCl2.  相似文献   

17.
In this study, calix[4]arene derivatives (1114) bearing a single nucleobase (adenine, thymine, cytosine or guanine) were synthesised via click chemistry. The complexation ability of the synthesised derivatives with alkali metal ions was measured using MALDI-TOF mass spectrometry, and their molecular assembly in CDCl3 was determined using 1H NMR. Calix[4]arene derivatives (1114) formed 1:1 complexes with all alkali metal ions and the rank order for the complexation selectivity was Rb+ > Cs+ > K+ ? Na+ > Li+. The attachment of nucleobase at the upper rim of calix[4]arene had little effect on its complexation selectivity for alkali metal ions. Thymine-, adenine- and guanine-calix[4]arenes formed self-assembled structures in CDCl3 via base–base interactions. In addition, adenine-calix[4]arene (11) bound to thymine-calix[4]arene (12) to form a discrete species via Hoogsteen hydrogen bonding.  相似文献   

18.
The transport of metal ions (Ca2+, Sr2+, Ba2+, Na+, K+, Cs+) through hollow fiber supported dichlorobenzene liquid membrane has been studied. The transport of cations using 8-crown-6 ether as a carrier and picrate as co-counter ion as well as a pertraction device and capillary isotachophoresis (ITP) measurement of the cation concentration is described.  相似文献   

19.
A system of ionic components of [`(C)]p,i0\bar C_{p,i}^0 is proposed for the standard partial molar heat capacities [`(C)]p20\bar C_{p2}^0 of electrolytes in a mixed N-methylpyrrolidone (MP)-water solvent. The [`(C)]p,i0\bar C_{p,i}^0 values are calculated for Li+, Na+, K+, Rb+, Cs+, and I ions in a mixed MP-water solvent at 298.15 K. The individual components of [`(C)]p,i0\bar C_{p,i}^0 values and their dependence on the solvent composition and ion size are considered.  相似文献   

20.
A systematic analysis of the structural, energetic, and thermodynamic factors involved in alkali metal (i.e., Na+, K+, Rb+, and Cs+) complexation by four calix[4]arene crown-6 ethers in the 1,3-alternate conformation is presented here. The ligands (or hosts) in this work are identical to, or closely related to, the four molecules whose selectivity towards complexing Na+, K+, Rb+, and Cs+ from aqueous solutions was studied experimentally by Casnati et al. (Tetrahedron 60(36):7869–7876, 2004). By dividing the complexation process into three different contributions, namely, the binding energy of the ion to the crown, the elastic energy of the crown, and the solvation effect, it becomes clear that the primary factor that determines ion selectivity in crown-6-ethers is not the size of the crown, as currently believed. All four crown ethers preferentially complex with the smallest ion (Na+) in the gas phase. In the condensed phase, these crown-6 ethers preferentially complex with the larger ions only because the aqueous solvation energies of the alkali metal ions make it thermodynamically less favorable to extract the smaller ions from aqueous solutions. This suggests that the current understanding of the factors influencing the selectivity of metal ion complexation by crown ethers may be in need of revision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号