首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation of 3‐miktoarm star terpolymers using nitroxide mediated radical polymerization (NMP), ring opening polymerization (ROP), and click reaction [3 + 2] are carried out by applying two types of one‐pot technique. In the first one‐pot technique, NMP of styrene (St), ROP of ε‐caprolactone (ε‐CL), and [3 + 2] click reaction (between azide end‐functionalized poly(ethylene glycol) (PEG‐N3)/or azide end‐functionalized poly(methyl methacrylate) (PMMA‐N3) and alkyne) are carried out in the presence of 2‐(hydroxymethyl)‐2‐methyl‐3‐oxo‐3‐(2‐phenyl‐2‐(2,2,6,6‐tetramethylpiperidin‐1‐yloxy)ethoxy) propyl pent‐4‐ynoate, 2 , as an initiator for 48 h at 125 °C (one‐pot/one‐step). As a second technique, NMP of St and ROP of ε‐CL were conducted using 2 as an initiator for 20 h at 125 °C, and subsequently PEG‐N3 or azide end‐functionalized poly(tert‐butyl acrylate (PtBA‐N3) was added to the polymerization mixture, followed by a click reaction [3 + 2] for 24 h at room temperature (one‐pot/two‐step). The 3‐miktoarm star terpolymers, PEG‐poly(ε‐caprolactone)(PCL)‐PS, PtBA‐PCL‐PS and PMMA‐PCL‐PS, were recovered by a simple precipitation in methanol without further purification. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3588–3598, 2007  相似文献   

2.
Amphiphilic ABC miktoarm star terpolymers consisting of polystyrene, poly(ε‐caprolactone), and poly(N‐isopropylacrylamide) arms, PS(‐b‐PNIPAM)‐b‐PCL, were synthesized via a combination of atom transfer radical polymerization, ring‐opening polymerization (ROP), and click chemistry. Difunctional PS bearing an alkynyl and a primary hydroxyl moiety at the chain end, PS‐alknylOH, was prepared by reacting azido‐terminated PS with an excess of 3,5‐bis(propargyloxy)benzyl alcohol (BPBA) under click conditions. The subsequent ROP of ε‐caprolactone using PS‐alknylOH macroinitiator afforded PS(‐alkynyl)‐b‐PCL copolymer bearing an alkynyl moiety at the diblock junction point. Target PS(‐b‐PNIPAM)‐b‐PCL amphiphilic ABC miktoarm star terpolymers were then prepared via click reaction between PS(‐alkynyl)‐b‐PCL and an excess of azido‐terminated PNIPAM (PNIPAM‐N3). The removal of excess PNIPAM‐N3 was accomplished by “clicking” onto alkynyl‐functionalized Wang resin. All the intermediate and final products were characterized by gel permeation chromatography, 1H NMR, and FTIR. In aqueous solution, the obtained amphiphilic ABC miktoarm star terpolymer self‐assembles into micelles possessing mixed PS/PCL cores and thermoresponsive shells, which were further characterized by dynamic laser light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1636–1650, 2009  相似文献   

3.
4.
ABC type miktoarm star copolymer with polystyrene (PS), poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) arms was synthesized using controlled polymerization techniques in combination with thiol‐ene and copper catalyzed azide‐alyne “click” reactions (CuAAC) and characterized. For this purpose, 1‐(allyloxy)‐3‐azidopropan‐2‐ol was synthesized as the core component in a one‐step reaction with high yields (96%). Independently, ω‐thiol functionalized polystyrene (PS‐SH) was synthesized in a two‐step protocol with a very narrow molecular weight distribution. The bromo end function of PS obtained by atom transfer radical polymerization was first converted to xanthate function and then reacted with 1, 2‐ethandithiol to yield desired thiol functional polymer (PS‐SH). The obtained polymer was grafted onto the core by thiol‐ene click chemistry. In the following stage, ε‐caprolactone monomer was polymerized from the core by ring opening polymerization (ROP) using tin octoate as catalyst through hydroxyl groups to form the second arm. Finally, PEG‐acetylene, which was simply synthesized by the esterification of Me‐PEG and 5‐pentynoic acid, was clicked onto the core through azide groups present in the structure. The intermediates at various stages and the final miktoarm star copolymer were characterized by 1H NMR, FTIR, and GPC measurements. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
ABC-type miktoarm star polymers, poly(ethylene oxide)-block-polystyrene-block-poly (ε-caprolactone)s (PEO-b-PS-b-PCL) were synthesized via combination of “click” chemistry, atom-transfer radical polymerization (ATRP) and ring opening polymerization (ROP). Azide ended PEO arms, PEO-N3, and a trifunctional molecule, propargyl 2-hydroxylmethyl-2-(α-bromoisobutyraloxymethyl)-propionate (PHBP), were prepared first, respectively. A “click” reaction of PEO-N3 and PHBP generated a PEO macroinitiator, PEO-(Br)(OH) with two functionalities, one is hydroxyl group and the other is α-bromoisobutyraloxyl group. Consecutive ATRP of styrene (St) and ROP of ε-caprolactone (ε-CL) from the PEO macroinitiator produced the PEO-b-PS-b-PCL miktoarm stars. All the structures of the polymers were determined.  相似文献   

6.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   

7.
Novel biocompatible, biodegradable, four‐arm star, triblock copolymers containing a hydrophobic poly(ε‐caprolactone) (PCL) segment, a hydrophilic poly(oligo(ethylene oxide)475 methacrylate) (POEOMA475) segment and a thermoresponsive poly(di(ethylene oxide) methyl ether methacrylate) (PMEO2MA) segment were synthesized by a combination of controlled ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, a four‐arm PCL macroinitiator [(PCL‐Br)4] for ATRP was synthesized by the ROP of ε‐caprolactone (CL) catalyzed by stannous octoate in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2‐bromoisobutyryl bromide. Then, sequential ATRP of oligo(ethylene oxide) methacrylate (OEOMA475, Mn = 475) and di(ethylene oxide) methyl ether methacrylate) (MEO2MA) were carried out using the (PCL‐Br)4 tetrafunctional macroinitiator, in different sequence, resulting in preparation of (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 and (PCL‐b‐PMEO2MA‐b‐POEOMA475)4 star triblock copolymers. These amphiphilic copolymers can self‐assemble into spherical micelles in aqueous solution at room temperature. The thermal responses of the polymeric micelles were investigated by dynamic light scattering and ultraviolet spectrometer. The properties of the two series of copolymers are quite different and depend on the sequence distribution of each block along the arms of the star. The (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 star copolymer, with the thermoresponsive PMEO2MA segment on the periphery, can undergo reversible sol‐gel transitions between room temperature (22 °C) and human body temperature (37 °C). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
A dendritic macroinitiator having 16 TEMPO‐based alkoxyamines, Star‐16 , was prepared by the reaction of a dendritic macroinitiator having eight TEMPO‐based alkoxyamines, [G‐3]‐OH , with 4,4′‐bis(chlorocarbonyl)biphenyl. The nitroxide‐mediated radical polymerization (NMRP) of styrene (St) from Star‐16 gave 16‐arm star polymers with PDI of 1.19–1.47, and NMPR of 4‐vinylpyridine from the 16‐arm star polymer gave 16‐arm star diblock copolymers with PDI of 1.30–1.43. The ring‐opening polymerization of ε‐caprolactone from [G‐3]‐OH and the subsequent NMRP of St gave AB8 9‐miktoarm star copolymers with PDI of 1.30–1.38. The benzyl ether linkages of the 16‐arm star polymers and the AB8 9‐miktoarm star copolymers were cleaved by treating with Me3SiI, and the resultant poly(St) arms were investigated by size exclusion chromatography (SEC). The SEC results showed PDIs of 1.23–1.28 and 1.18–1.22 for the star polymers and miktoarm stars copolymers, respectively, showing that they have well‐controlled poly(St) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1159–1169, 2007.  相似文献   

9.
3‐Arm star‐block copolymers, (polystyrene‐b‐poly(methyl methacrylate))3, (PS‐b‐PMMA)3, and (polystyrene‐b‐poly(ethylene glycol))3, (PS‐b‐PEG)3, are prepared using double‐click reactions: Huisgen and Diels–Alder, with a one‐pot technique. PS and PMMA blocks with α‐anthracene‐ω‐azide‐ and α‐maleimide‐end‐groups, respectively, are achieved using suitable initiators in ATRP of styrene and MMA, respectively. However, PEG obtained from a commercial source is reacted with 3‐acetyl‐N‐(2‐hydroxyethyl)‐7‐oxabicyclo[2.2.1]hept‐5‐ene‐2‐carboxamide (7) to give furan‐protected maleimide‐end‐functionalized PEG. Finally, PS/PMMA and PS/PEG blocks are linked efficiently with trialkyne functional linking agent 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]‐ethane 2 in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) at 120 °C for 48 h to give two samples of 3‐arm star‐block copolymers. The results of the peak splitting using a Gaussian deconvolution of the obtained GPC traces for (PS‐b‐PMMA)3 and (PS‐b‐PEG)3 displayed that the yields of target 3‐arm star‐block copolymers were found to be 88 and 82%, respectively. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7091–7100, 2008  相似文献   

10.
ABCD‐type 4‐miktoarm star copolymers of styrene (St), α‐methylstyrene (αMSt), tert‐butyl methacrylate (tBuMA), and 4‐vinylpyridine (4VP) were synthesized via anionic polymerization using 1,3‐bis(1‐phenylvinyl)benzene (m‐DDPE) as the linking molecule. The synthetic route was rationally designed with respect to the reactivity of individual propagating anion towards the double bond of m‐DDPE. Thus the synthesis includes several consecutive key reactions, for example, the monoaddition of polystyryllithium towards m‐DDPE, the polymerization of tBuMA initiated by the resulting monoadduct to produce a diblock macromonomer, the coupling of the macromonomer with poly(α‐methylstyryl)lithium to form a 3‐arm star anion, and the polymerization of 4‐vinylpyridine initiated by the star anion. These reactions were conducted either in a one‐pot process, in which the diblock macromonomer was in situ coupled with poly(α‐methylstyryl)lithium, or in a batch polymerization process, in which the same diblock macromonomer was separated. The final product was hydrolyzed to produce a zwitterionic miktoarm star copolymer, which was soluble at lower pH but insoluble in neutral and basic solution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4818–4828, 2007  相似文献   

11.
Multiblock polymers were prepared by combination of ATRP (CuBr/tris[(2‐pyridyl)methyl]amine) and RAFT polymerization involving cyclic trithiocarbonate (CTTC). In the combined polymerization system, the ATRP was introduced as constant radical source, CTTC underwent ring‐opening polymerization, and the incorporated trithiocarbonate moieties derived from CTTCs performed as RAFT agent. Through the integrated process, multiblock polymers containing predictable average block number together with controlled molecular weight of the blocks were prepared by one‐pot polymerization. The average block number of polymer was controlled by concentration ratio of CTTC to alkyl halide in ARTP, and the molecular weight of block were well regulated by concentration of CTTC and monomer conversion. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2425–2429, 2010  相似文献   

12.
The effect of the steric hindrance on the initiating properties of two multifunctional resorcinarene‐based initiators in atom transfer radical polymerization (ATRP) was studied by using Cu(I)‐complexes of three multidentate amine ligands in the polymerization of tert‐butyl acrylate and methyl methacrylate. These ligands are less sterically hindered and have higher activities in the catalysis of ATRP of (meth)acrylates than 2,2′‐bipyridine. The polymerizations were faster and more controlled than with the 2,2′‐bipyridyl catalyst, but the tendency for bimolecular coupling increased. Even though the initiator was octafunctional, the resulting star polymers had only four arms. This indicates that the steric hindrance arising from the conformations of the initiators determines the structure of the polymer, but the ligand noticeably affects the controllability of the polymerization © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3349–3358, 2005  相似文献   

13.
Novel A2B2‐type energetic miktoarm star‐shaped copolymers composed of two PGN arms and two PCL arms was synthesized by the combination of ring‐opening polymerization (ROP) and “click” chemistry. Initially, diazido end‐functionalized two‐arm PGN, (PGN)2‐(N3)2, was synthesized by ROP of glycidyl nitrate monomers. Subsequently, (PGN)2‐(PCL)2 was obtained from the click reaction between diazido end‐functionalized (PGN)2‐(N3)2 polymers and propargyl‐terminated poly(ε‐caprolactone) (PTPCL). This star copolymer solves problems of PCL (lake of energy) and PGN (low Tg). The Fourier‐transform infrared (FT‐IR), 1H nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) studies revealed that (PGN)2‐(PCL)2 was successfully obtained. The thermal behavior of star polymer was investigated by thermogravimetric analysis (TGA) and derivative thermogravimetry. The results show that (PGN)2‐(PCL)2 decomposed at two stages. The first stage is seen at 212.6°C which related to degradation of –ONO2 group and second stage attributed to degradation of PCL group which is seen at 346.1°C.  相似文献   

14.
Well‐defined amphiphilic and thermoresponsive ABC miktoarm star terpolymer consisting of poly(ethylene glycol), poly(tert‐butyl methacrylate), and poly(N‐isopropylacrylamide) arms, PEG(‐b‐PtBMA)‐b‐PNIPAM, was synthesized via a combination of consecutive click reactions and atom transfer radical polymerization (ATRP). Click reaction of monoalkynyl‐terminated PEG with a trifunctional core molecule bis(2‐azidoethyl)amine, (N3)2? NH, afforded difunctional PEG possessing an azido and a secondary amine moiety at the chain end, PEG‐NH? N3. Next, the amidation of PEG‐NH? N3 with 2‐chloropropionyl chloride led to PEG‐based ATRP macroinitiator, PEG(? N3)? Cl. The subsequent ATRP of N‐isopropylacrylamide (NIPAM) using PEG(? N3)? Cl as the macroinitiator led to PEG(? N3)‐b‐PNIPAM bearing an azido moiety at the diblock junction point. Finally, well‐defined ABC miktoarm star terpolymer, PEG(‐b‐PtBMA)‐b‐PNIPAM, was prepared via the click reaction of PEG(? N3)‐b‐PNIPAM with monoalkynyl‐terminated PtBMA. In aqueous solution, the obtained ABC miktoarm star terpolymer self‐assembles into micelles consisting of PtBMA cores and hybrid PEG/PNIPAM coronas, which are characterized by dynamic and static laser light scattering, and transmission electron microscopy. On heating above the phase transition temperature of PNIPAM in the hybrid corona, micelles initially formed at lower temperatures undergo further structural rearrangement and fuse into much larger aggregates solely stabilized by PEG coronas. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4001–4013, 2009  相似文献   

15.
We have introduced a facile synthetic route for well‐defined A2B miktoarm star copolymer composed of regioregular poly(3‐hexylthiophene) and poly(methyl methacrylate) ((P3HT)2PMMA) by the combination of anionic polymerization and click reaction. First, we synthesized PMMA terminated with 1,3,5‐tris(bromomethyl)benzene (PMMA‐(Br)2) by anionic polymerization, and two bromines attached to the end of the PMMA chains were replaced by azides (PMMA‐(N3)2). Also, monoethynyl‐capped P3HT was synthesized by Grignard metathesis polymerization and post‐end functionalization. Then, copper(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition click reaction between monoethynyl‐capped P3HT and PMMA‐(N3)2 was performed to synthesize (P3HT)2PMMA. We used a slightly excess amount of monoethynyl‐capped P3HT so that all of the azide groups at the end of the PMMA chains completely reacted with monoethynyl‐capped P3HT. After complete removal of unreacted monoethynyl‐capped P3HT by column chromatography, pure (P3HT)2PMMA with narrow molecular weight distribution (the polydispersity of 1.18) was obtained. The weight fraction of P3HT and the total molecular weight of (P3HT)2PMMA are 0.48 and 16,000, respectively. To investigate the effect of the chain architecture on optical property and thin‐film morphology, we synthesized two linear P3HT‐b‐PMMAs (P3HT‐b‐PMMA‐L and P3HT‐b‐PMMA‐H) with similar weight fraction of P3HT block (0.48 for P3HT‐b‐PMMA‐L and 0.45 for P3HT‐b‐PMMA‐H) but two different total molecular weights (7900 for P3HT‐b‐PMMA‐L and 15,300 for P3HT‐b‐PMMA‐H). UV–visible (UV–vis) absorption spectrum and the fibril width of (P3HT)2PMMA thin film were similar to those of P3HT‐b‐PMMA‐L thin film. However, UV–vis spectrum for P3HT‐b‐PMMA‐H thin film was red‐shifted and the fibril width of P3HT‐b‐PMMA‐H was much larger than that of (P3HT)2PMMA. This indicates that the π–π interaction between P3HT arms in (P3HT)2PMMA is strong enough to arrange two P3HT backbone chains in (P3HT)2PMMA to stack one by one along the nanofibril axis. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

17.
Heterotelechelic polystyrene (PS), poly(tert‐butyl acrylate) (PtBA), and poly (methyl acrylate) (PMA), containing both azide and triisopropylsilyl (TIPS) protected acetylene end groups, were prepared in good control (Mw/Mn ≤ 1.24) by atom transfer radical polymerization (ATRP). The end groups were independently applied in two successive “click” reactions, that is: first the azide termini were functionalized and, after deprotection, the acetylene moieties were utilized for a second conjugation step. As a proof of concept, PS was consecutively functionalized with propargyl alcohol and azidoacetic acid, as confirmed by MALDI‐ToF MS. In addition, the same methodology was employed to modularly build up an ABC type triblock terpolymer. Size exclusion chromatography measurements demonstrated first coupling of PtBA to PS and, after the deprotection of the acetylene functionality on PS, connection of PMA, yielding a PMA‐b‐PS‐b‐PtBA triblock terpolymer. The reactions were driven to completion using a slight excess of azide functionalized polymers. Reduction of the residual azide groups into amines allowed easy removal of this excess of polymer by column chromatography. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2913–2924, 2007  相似文献   

18.
A novel six‐arm star block copolymer comprising polystyrene (PS) linked to the center and π‐conjugated poly (3‐hexylthiophene) (P3HT) was successfully synthesized using a combination of atom transfer radical polymerization (ATRP) and click reaction. First, star‐shaped PS with six arms was prepared via ATRP of styrene with the discotic six‐functional initiator, 2,3,6,7,10,11‐hexakis(2‐bromoisobutyryloxy)triphenylene. Next, the terminal bromides of the star‐shaped PS were substituted with azide groups. Afterward, the six‐arm star block copolymer PS‐b‐P3HT was prepared using the click coupling reaction of azide‐terminated star‐shaped PS with alkynyl‐terminated P3HT. Various techniques including 1H NMR, Fourier‐transform infrared and size‐exclusion chromatography were applied to characterize the chemical structures of the intermediates and the target block copolymers. Their thermal behaviors and optical properties were investigated using differential scanning calorimetry and UV–vis spectroscopy. Moreover, atomic force microscopy (AFM) was utilized to observe the morphology of the star block copolymer films. In comparison with two linear diblock copolymer counterparts, AFM results reveal the effect of the star block copolymer architecture on the microphase separation‐induced morphology in thin films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Poly(ethylene oxide) (PEO) star polymer with a microgel core was prepared by atom transfer radical poylmerization (ATRP) of divinyl benzene (DVB) with mono‐2‐bromoisobutyryl PEO ester as a macroinitiator. Several factors, such as the feed ratio of DVB to the initiator, type of catalysts, and purity of DVB, play important roles during star formation. The crosslinked poly(divinyl benzene) (PDVB) core was further obtained by the hydrolysis of PEO star to remove PEO arms. Size exclusion chromatography (SEC) traces revealed the bare core has a broad molecular weight distribution. PEO–polystyrene (PS) heteroarm star polymer was synthesized through grafting PS from the core of PEO star by another ATRP of styrene (St) because of the presence of initiating groups in the core inherited from PEO star. Characterizations by SEC, 1H NMR, and DSC revealed the successful preparation of the target star copolymers. Scanning electron microscopy images suggested that PEO–PS heteroarm star can form spherical micelles in water/tetrahydrofuran mixture solvents, which further demonstrated the amphiphilic nature of the star polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2263–2271, 2004  相似文献   

20.
Two complementary tandem strategies based on the one‐pot combination of click chemistry and atom transfer radical polymerization (ATRP) are studied. Initially, functionalized random copolymers are obtained by copolymerization of methyl methacrylate and propargyl methacrylate simultaneously to the click chemistry coupling of a monofunctional azide. Then, an approach based on the copolymerization of methyl methacrylate and 11‐azido‐undecanoyl methacrylate simultaneously to the click chemistry coupling of a monofunctional alkyne is also investigated. For both the approach, polymerization and click chemistry coupling are catalyzed by CuBr and bipyridine (Bipy) in diphenylether at 90 °C. The [Bipy]/[CuBr] ratio is varied from 2 to 25 and the ratio of functionalized comonomer from 20 to 70 mol %. Both the tandem strategies proceed with good yields (50–80%) and allow a good control over the characteristics of the resulting random copolymers and macromolecular brushes (Mn ~ 15,000–40,000 g/mol and PDI ~ 1.3–2.0) as well as quantitative click functionalization as characterized by 1H NMR and size exclusion chromatography analyses. Although the click process is generally completed at the early stage of the process, the rate of polymerization depends on the amount of bipyridine involved. It was found that extending most of the polymerization process out of the click reaction regime results in a better control of the polymerization, preventing the significant occurrence of side reactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3803–3813, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号