首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three low bandgap polyfluorene copolymers containing a donor–acceptor–donor moiety have been synthesized via Suzuki and Stille polymerization reactions. Their bandgaps and molecular energy levels (highest occupied molecular orbital and lowest unoccupied molecular orbital) varied with different polymerization methods. The molecular weight of the copolymer increased significantly through copolymerizing with a monomer having a long alkyl side chain. In order to investigate their photovoltaic properties, polymer solar cell devices based on the copolymers were fabricated with a structure of indium tin oxide/poly(styrene sulfonic acid)‐doped poly(ethylene dioxythiophene)/copolymers:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM)/LiF/Al under the illumination of AM 1.5G, 100 mW/cm2. We found that the annealing temperature had a profound effect on the power conversion efficiency (PCE) of the devices with a blend of poly[9,9‐didodecylfluorene‐alt‐(bis‐thienylene) benzothiadiazole] (PF12‐TBT) and PCBM. The PCE of the solar cell based on PF12‐TBT/PCBM (1:4) annealing at 70 °C for 20 min was 4.13% with an open‐circuit voltage (Voc) of 1.02 V, fill factor of 55.9%, and a short‐circuit current (Jsc) of 7.24 mA/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A series of polymers based on 8,8′‐biindeno[2,1‐b]thiophenylidene for use in photovoltaic devices and field‐effect transistors are reported. These structurally twisted olefins are effective building blocks for preparation of low bandgap polymers with optical bandgaps of 1.2–1.5 eV. Device performance, such as Voc and Jsc, in solar cell devices could be successfully modulated by incorporation of a variety of comonomers. Ambipolar properties in field‐effect transistors using Au electrodes were also studied, with PtBTPDPP exhibiting balanced charge transport properties with hole and electron mobilities of 0.09 and 0.12 cm2·V?1·s?1, respectively. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 889–899  相似文献   

3.
An alternating donor‐acceptor copolymer based on a benzotriazole and benzodithiophene was synthesized and selenophene was incorporated as π‐bridge. The photovoltaic and optical properties of polymer were studied. The copolymer showed medium band gap and dual absorption peaks in UV‐Vis absorption spectra. Photovoltaic properties of P‐SBTBDT were performed by conventional device structure. The OSC device based on polymer: PC71BM (1:1, w/w) exhibited the best PCE of 3.60% with a Voc of 0.67 V, a Jsc of 8.95 mA/cm2, and a FF of 60%. This finding was supported with morphological data and space charge limited current (SCLC) mobilities. The hole mobility of the copolymer was estimated through SCLC model. Although surface roughness of the active layer is really high, mobility of a polymer was found as 7.46 × 10?3 cm2/Vs for optimized device that can be attributed to Se?Se interactions due to the larger, more‐polarizable Se atom. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 528–535  相似文献   

4.
We have synthesized two cyclopentadithiophene (CDT)‐based low bandgap copolymers, poly[(4,4‐bis(2‐ethyl‐hexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(benzo[c][1,2,5]selenadiazole‐4,7‐diyl)] (PCBSe) and poly[(4,4‐bis(2‐ethyl‐hexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(4,7‐dithiophen‐2‐yl‐benzo[c][1,2,5]selenadiazole‐5,5′‐diyl)] (PCT2BSe), for use in photovoltaic applications. Through the internal charge transfer interaction between the electron‐donating CDT unit and the electron‐accepting benzoselenadiazole, we realized exceedingly low bandgap polymers with bandgaps of 1.37–1.46 eV. The UV–vis absorption maxima of PCT2BSe were subjected to larger hypsochromic shifts than those of PCBSe, because of the distorted electron donor–acceptor (D–A) structures of the PCT2BSe backbone. These results were supported by the calculations of the D–A complex using the ab initio Hartree‐Fock method with a split‐valence 6‐31G* basis set. However, PCT2BSe exhibited a better molar absorption coefficient in the visible region, which can lead to more efficient absorption of sunlight. As a result, PCT2BSe blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) exhibited a better photovoltaic performance than PCBSe because of the larger spectral overlap integral with respect to the solar spectrum. Furthermore, when the polymers were blended with PC71BM, PCT2BSe showed the best performance, with an open circuit voltage of 0.55 V, a short‐circuit current of 6.63 mA/cm2, and a power conversion efficiency of 1.34% under air mass 1.5 global illumination conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1423–1432, 2010  相似文献   

5.
The power conversion efficiency of an organic solar cell has now exceeded the 10% mark, which is a significant improvement in the last decade. This has been made possible due to the development of low-band-gap polymers with tunable electron affinity, ionization potential, solubility, and miscibility with the fullerene acceptor, and the improved understanding of the factors affecting the critical device parameters such as the VOC and the JSC. This review examines the latest strategies, results, and trends that have evolved in the design of solar cells with better efficiency and durability. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

6.
The following noble series of soluble π‐conjugated statistical copolymers was synthesized by palladium catalyzed Suzuki polymerization: poly[(9,9‐dioctylfluorene)‐alt‐(4,7‐bis(3′,3′‐dihepyl‐3,4‐propylenedioxythienyl)‐2,1,3‐benzothiadiazole)] (PFO‐PTBT) derived from poly(9,9‐dioctylfluorene) (PFO) and poly[(4,7‐bis(3′,3′‐dihepyl‐3,4‐propylenedioxythienyl)‐2,1,3‐benzothiadiazole)] poly(heptyl4‐PTBT). The structure and properties of these polymers were characterized using 1H‐, 13C‐NMR, UV–visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PFO‐PTBT (9:1, 8.4:1.6, 6.5:3.5), were soluble in common organic solvents and easily spin coated onto indium‐tin oxide (ITO) coated glass substrates. The weight‐average molecular weight (Mw) and polydispersity of the PFO‐PTBT ranged from (1.0–4.2) × 104 and 1.5–2.3, respectively. Bulk heterojunction photovoltaic cells with an ITO/PEDOT/PFO‐PTBT:PCBM/LiF/Al configuration were fabricated, and the devices using PFOPTBT (6.5:3.5) showed the best performance compared with those using PFO‐PTBT (9:1, 8.4:1.6). A maximum power conversion efficiency (PCE) of 0.50% (Voc = 0.66 V, FF = 0.29) was achieved with PFO‐PTBT (6.5:3.5). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6175–6184, 2008  相似文献   

7.
以二噻吩[3,2-b:2',3'-d]并吡咯为电子给体单元、2,1,3-苯并噻二唑为电子受体单元.通过Stille偶联反应合成了4个含不同烷基取代基的给体-受体(D-A)型共轭齐聚物,即O-D3,O-D2P1,O-D1P2和O-P3,它们分别含有3~0个正十二烷基(D=dodecyl)和0~3个支化烷基链戊基己基(P=...  相似文献   

8.
Two donor–acceptor (D‐A) conjugated polymers, PQx and PphQx, composed of alkylthienyl‐substituted benzo[1,2‐b:4,5‐b']dithiophene (BDTT) as the electron donor and the new electron acceptors quinoxaline (Qx) or phenanthrenequinoxaline (phQx), were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PQx and PphQx were found to be 25.1 and 23.2 kDa, respectively, with a dispersity of 2.6. The band‐gap energies of PQx and PphQx are 1.82 and 1.75 eV, respectively. These results indicate that, because phQx units have highly planar structures, their inclusion in D‐A polymers will be a very effective method for increasing the polymers' effective conjugation lengths. The hole mobilities of PQx and PphQx were determined to be 5.0 × 10?5 and 2.2 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PphQx as the active layer was found to exhibit a power conversion efficiency (PCE) of 5.03%; thus, the introduction of phQx units enhanced both the short circuit current density and PCE of the device. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2804–2810  相似文献   

9.
A series of soluble donor‐acceptor conjugated polymers comprising of phenothiazine donor and various benzodiazole acceptors (i.e., benzothiadiazole, benzoselenodiazole, and benzoxadiazole) sandwiched between hexyl‐thiophene linkers were designed, synthesized, and used for the fabrication of polymer solar cells (PSC). The effects of the benzodiazole acceptors on the thermal, optical, electrochemical, and photovoltaic properties of these low‐bandgap (LBG) polymers were investigated. These LBG polymers possessed large molecular weight (Mn) in the range of 3.85?5.13 × 104 with high thermal decomposition temperatures, which demonstrated broad absorption in the region of 300?750 nm with optical bandgaps of 1.80?1.93 eV. Both the HOMO energy level (?5.38 to ?5.47 eV) and LUMO energy level (?3.47 to ?3.60 eV) of the LBG polymers were within the desirable range of ideal energy level. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers mixed with electron acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The best performance of the PSC device was obtained by using polymer PP6DHTBT as an electron donor and PC71BM as an acceptor in the weight ratio of 1:4, and a power conversion efficiency value of 1.20%, an open‐circuit voltage (Voc) value of 0.75 V, a short‐circuit current (Jsc) value of 4.60 mA/cm2, and a fill factor (FF) value of 35.0% were achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Novel bromine‐functionalized photocrosslinkable low‐bandgap copolymers, PBDTTT‐Br25 and PBDTTT‐Br50, are synthesized via Stille cross‐coupling polymerization for the purpose of stabilizing the film morphology in polymer solar cells (PSCs). Photocrosslinking of PBDTTT‐Br25 and PBDTTT‐Br50 copolymers dramatically improves the solvent resistance of the active layer without disrupting the molecular ordering and charge transport, which is confirmed by the insolubility of the films washed by organic solvents and by their thermal behavior. As a result, the formation of large aggregations of fullerene is suppressed in polymer:fullerene blend films even after prolonged thermal annealing, and the stability of the device is enhanced when compared with cells based on noncrosslinkable PBDTTT. The power conversion efficiency of the PSCs based on PBDTTT‐Br25 and PBDTTT‐Br50 reaches 5.17% and 4.48%, respectively, which is improved obviously in comparison with that (4.26%) of the PSCs based on the control polymer PBDTTT. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3123–3131  相似文献   

11.
Three new polymers poly(3,4′′′‐didodecyl) hexaselenophene) (P6S), poly(5,5′‐bis(4,4′‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (HHP6S), and poly(5,5′‐bis(3′,4‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (TTP6S) that have the same selenophene‐based polymer backbone but different side chain patterns were designed and synthesized. The weight‐averaged molecular weights (Mw) of P6S, HHP6S, and TTP6S were found to be 19,100, 24,100, and 19,700 with polydispersity indices of 2.77, 1.48, and 1.41, respectively. The UV–visible absorption maxima of P6S, HHP6S, and TTP6S are at 524, 489, and 513 nm, respectively, in solution and at 569, 517, and 606 nm, respectively, in the film state. The polymers P6S, HHP6S, and TTP6S exhibit low band gaps of 1.74, 1.95, and 1.58 eV, respectively. The field‐effect mobilities of P6S, HHP6S, and TTP6S were measured to be 1.3 × 10?4, 3.9 × 10?6, and 3.2 × 10?4 cm2 V?1 s?1, respectively. A photovoltaic device with a TTP6S/[6,6]‐phenyl C71‐butyric acid methyl ester (1:3, w/w) blend film active layer was found to exhibit an open circuit voltage (VOC) of 0.71 V, a short circuit current (JSC) of 5.72 mA cm?2, a fill factor of 0.41, and a power conversion efficiency (PCE) of 1.67% under AM 1.5 G (100 mW cm?2) illumination. TTP6S has the most planar backbone of the tested polymers, which results in strong π–π interchain interactions and strong aggregation, leading to broad absorption, high mobility, a low band gap, and the highest PCE. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Two novel porphyrin‐based D‐A conjugated copolymers, PFTTQP and PBDTTTQP , consisting of accepting quinoxalino[2,3‐b′]porphyrin unit and donating fluorene or benzo[1,2‐b:4,5‐b′]dithiophene unit, were synthesized, respectively via a Pd‐catalyzed Stille‐coupling method. The quinoxalino[2,3‐b′]porphyrin, an edge‐fused porphyrin monomer, was used as a building block of D‐A copolymers, rather than the simple porphyrin unit in conventional porphyrin‐based photovoltaic polymers reported in literature, to enhance the coplanarity and to extend the π‐conjugated system of polymer main chains, and consequently to facilitate the intramolecular charge transfer (ICT). The thermal stability, optical, and electrochemical properties as well as the photovoltaic characteristics of the two polymers were systematically investigated. Both the polymers showed high hole mobility, reaching 4.3 × 10?4 cm2 V?1 s?1 for PFTTQP and 2.0 × 10?4 cm2 V?1 s?1 for PBDTTTQP . Polymer solar cells (PSCs) made from PFTTQP and PBDTTTQP demonstrated power conversion efficiencies (PCEs) of 2.39% and 1.53%, both of which are among the highest PCE values in the PSCs based on porphyrin‐based conjugated polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013  相似文献   

13.
A series of new low‐band gap copolymers based on dioctyloxybenzo[1,2‐b;3,4‐b′] dithiophene and bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline monomers have been synthesized via a Stille reaction. The effect of different functional groups attached to bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline was investigated and compared with their optical, electrochemical, hole mobility, and photovoltaic properties. Polymer solar cell (PSC) devices of the copolymers were fabricated with a configuration of ITO/ PEDOT: PSS/copolymers: PCBM (1:4 wt ratio)/Ca/Al. The best performance of the PSC device was obtained by using PbttpmobQ as the active layer. A power conversion efficiency of 1.42% with an open‐circuit voltage of 0.8 V, a short‐circuit current (JSC) of 5.73 mA cm−2, and a fill factor of 30.9% was achieved under the illumination of AM 1.5, 100 mW cm−2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Polymer solar cells (PSCs) were fabricated using a ternary blend film consisting two conjugated polymers and a soluble fullerene derivative as the donor and acceptor materials, respectively. And, to compare ternary blend system, the single‐component copolymers consisting of the repeating units of each of the copolymers, used in ternary blend solar cells, were designed and synthesized for use as the electron donor materials in binary blend solar cells. We systematically investigated the field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers. Under optimized conditions, the binary blend polymer systems showed power conversion efficiencies (PCEs) for the PSCs in the range 3.87–4.16% under AM 1.5 illumination (100 mW cm?2). All polymers exhibited similar PCEs that did not depend on the ratio of repeating units. The binary blend solar cell containing a single‐component copolymer as the electron donor material performed better than the ternary blend solar cell in this work. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The morphology of active layer with an interpenetrating network structure and appropriate phase separation is of great significance to improve the photovoltaic performance for polymer solar cells. A highly crystalline small molecule named DPP-TP6 was synthesized and incorporated into the narrow bandgap polymer solar cells to optimize the morphology of PTB7:PC71BM active layer. The DPP-TP6 small molecule was demonstrated to enhance the light absorbance of active layer and play the role of energy cascade to increase the exciton separation and charge transfer. What's more, DPP-TP6 facilitated forming interpenetrating network structure and increasing the phase separation size of ternary blends. These phenomena lead to a higher hole mobility and a more balanced carrier mobility, so as to increase the power conversion efficiency to 7.85% at DPP-TP6 weight ratio of 8 wt %, comparing to the pristine PTB7:PC71BM system of 6.50%. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 726–733  相似文献   

16.
Synthesis, properties, and optoelectronic device applications of four new bis‐[4‐(2‐ethyl‐hexyloxy)‐phenyl]quinoxaline( Qx(EHP) )‐based donor‐acceptor conjugated copolymers are reported, in which the donors are thiophene( T ), dithiophene( DT ), dioctylfluorene( FO ), and didecyloxyphenylene( OC10 ). The optical band gaps (Eg) of PThQx(EHP) , PDTQ(EHP) , POC10DTQ(EHP) , and PFODTQ(EHP) estimated from the onset absorption are 1.57, 1.65, 1.77, and 1.92 eV, respectively. The smallest Eg of PThQx(EHP) among the four copolymers is attributed to the balanced donor/acceptor ratio and backbone coplanarity, leading to a strong intramolecular charge transfer. The hole mobilities obtained from the thin film transistor (TFT) devices of PThQx(EHP) , PDTQ(EHP) , POC10DTQ(EHP) , and PFODTQ(EHP) are 2.52 × 10?4, 4.50 × 10?3, 4.72 × 10?5, and 9.31 × 10?4 cm2 V?1 s?1, respectively, with the on‐off ratios of 2.00 × 104, 1.89 × 103, 4.07 × 103, and 2.30 × 104. Polymer solar cell based on the polymer blends of PFODTQ(EHP) , PThQx(EHP) , POC10DTQ(EHP) , and PDTQ(EHP) with [6, 6]‐phenyl C61‐butyric acid methyl ester (PCBM) under illumination of AM1.5 (100 mW cm?2) solar simulator exhibit power conversion efficiencies of 1.75, 0.92, 0.79, and 0.43%, respectively. The donor/acceptor strength, molecular weight, miscibility, and energy level lead to the difference on the TFT or solar cell characteristics. The present study suggests that the prepared bis[4‐(2‐ethyl‐hexyloxy)‐phenyl]quinoxaline donor‐acceptor conjugated copolymers would have promising applications on electronic device applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 973–985, 2009  相似文献   

17.
Soluble polythiophenes bearing strong electron withdrawing groups, dicyanoethenyl [? CH?C(CN)2] (PTDCN) and cyano‐methoxycarbonylethenyl [? CH?C(CO2Me)CN] (PTCNME), in the side chains have been prepared. Optical band gaps calculated from onset absorption were 1.70 eV and 1.73 eV for PTDCN and PTCNME, respectively. Highest occupied molecular orbital energy levels measured with a surface analyzer (AC‐2) were ?5.53 eV and ?5.29 eV for PTDCN and PTCNME, respectively, which were much lower than that of poly(3‐hexylthiophene) (?4.81 eV). To investigate photovoltaic properties, bulk heterojunction polymer solar cells based on PTDCN and PTCNME were fabricated with a structure of ITO/PEDOT:PSS/active layer/LiF/Al, where the active layer was a blend film of polymer and [6,6]‐phenyl C61 butyric acid hexyl ester (PC61BH). Solar cell parameters were estimated from current density–voltage (JV) characteristics under the illumination of AM1.5 at 100 mW/cm2. The solar cell based on the blend film of PTCNME:PC61BH (1:1) showed power conversion efficiency (PCE) of 0.72% together with the open current voltage (Voc) of 0.61 V, the short current density (Jsc) of 3.90 mA/cm2, and the fill factor of 30.3%. The PCE of a solar cell fabricated from PTDCN in a similar way was 0.56%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
聚合物太阳能电池材料研究进展   总被引:5,自引:0,他引:5  
本文介绍了几种常见的聚合物太阳电池材料。综述了聚合物太阳电池材料的合成、发展历史和现状,对其应用前景进行了展望。参考文献59篇。  相似文献   

19.
Two novel multicomponent copolymers ( P1 and P2 ) containing polyfluorene (PF), oligo(phenylenevinylene) ( OPV ), and porphyrin ( Por ) derivatives were synthesized according to the Suzuki polymerization method. The structures, optical, and electrochemical properties of the two model compounds ( OPV and Por ) and multicomponent copolymers were characterized by 1H NMR, FTIR, elemental analysis, UV–vis spectroscopy, photoluminescence, and cyclic voltammetry, respectively. Both of the copolymers exhibit thermotropic liquid crystalline properties and represent the characteristic Schlieren textures in a wide temperature range. Electroluminescence spectra of these copolymers exhibit broadband emissions covering the entire visible region from 400 to 700 nm. The single layer polymer light emitting diodes device based on P2 with a configuration of indium tin oxide/poly(ethylenedioxythiophene):poly(styrenesulfonic acid)/polymers/Ca/Al emits white light with the Commission Internationale de l′Eclairage chromaticity coordinates of (0.29, 0.30), maximum brightness of 443 cd/m2. The white‐light‐emitting devices based on the novel multicomponent copolymers exhibit low turn‐on voltage, and good color stability at different driving voltages as well. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5291–5303, 2009  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号