首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inclusion complexes of (-)-epicatechin gallate (ECg) as well as (+)-gallocatechin gallate (GCg) and beta-cyclodextrin (beta-CD) in an aqueous solution were investigated using several NMR techniques and a computational method. ECg and EGCg formed a 1:1 complex with beta-CD, in which the A ring and a portion of the C ring were included from the wide secondary hydroxyl group side of the beta-CD cavity, and the B and B' rings were left outside the cavity. GCg formed a 1:2 complex with beta-CD, in which the A and B rings of GCg were included by two molecules of beta-CD. The difference between the two modes of inclusion of the 1:1 complex of ECg, EGCg.beta-CD and the 1:2 complex of GCg.beta-CD might have resulted from the size of the space between the B and B' rings in aqueous solution. As a result of nuclear Overhauser effect (NOE) experiments, GCg was considered to have a large enough space between the B and B' rings to include the B ring in the beta-CD cavity; on the other hand, ECg and EGCg have no such large space.  相似文献   

2.
The probable structure of the inclusion complex of beta-cyclodextrin (beta-CD) and (-)-epigallocatechin gallate (EGCg) in D2O was investigated using several NMR techniques. EGCg formed a 1:1 complex with beta-CD, in which the A ring and a portion of the C ring of EGCg were included at the head of the phenolic hydroxyl group attached to C7 of EGCg in the beta-CD cavity from the wide secondary hydroxyl group side. In the 1:1 complex with beta-CD, EGCg maintained the conformation in which the B and B' rings of EGCg took pseudoequatorial and pseudoaxial positions with respect to the C ring, respectively. The structure of the inclusion complexes of beta-CD and EGCg obtained from NMR experiments supported those determined from AM1 semiempirical SCF MO calculations well.  相似文献   

3.
A novel 4,4′‐sulfonyldianiline‐bridged bis(β‐cyclodextrin (CD)) 2 was synthesized, and its complex stability constants (Ks) for the 1 : 1 inclusion complexation with bile salts, i.e., cholate (CA), deoxycholate (DCA), glycocholate (GCA), and taurocholate (TCA) have been determined in phosphate buffer (pH 7.2) at 25° by fluorescence spectroscopy. The result indicated that 2 can act as efficient fluorescent sensor and display remarkable fluorescence enhancement upon addition of optically inert bile salts. Structures of the inclusion complexes between bile salts and 2 were elucidated by 2D‐NMR experiments, indicating that the anionic tail group and the D ring of bile salts penetrate into one CD cavity of 2 from the wide opening deeply, while the phenyl moiety of the CD linker is partially self‐included in the other CD cavity to form a host–linker–guest binding mode. As compared with native β‐CD 1 upon complexation with bile salts, bis(β‐CD) 2 enhances the binding ability and molecular selectivity. Typically, 2 gives the highest Ks value of 26200 M ?1 for the complexation with CA, which may be ascribed to the simultaneous contributions of hydrophobic, H‐bond, and electrostatic interactions. These phenomena are discussed from the viewpoints of multiple recognition and induce‐fit interactions between host and guest.  相似文献   

4.
To prevent the precipitation reaction between glycyrrhizin ( 1 ) and berberine ( 3 ) in the decoctions of Glycyrrhiza/Coptis rhizome or Glycyrrhiza/Phellodendron bark, the presence of cyclodextrin (CD) in the mixture was proven to be effective. The preventing effect decreased in the order γ‐CD>β‐CD, and no effect was observed for α‐CD. On the other hand, the extraction degree of 1 from the natural medicine Glycyrrhia was considerably increased in the presence of γ‐CD, γ‐CD being much more effective than α‐ or β‐CD. Thus, the blocking effect of CD on the precipitate formation between 1 and 3 is suggested to be primarily dependent on the stability of the inclusion complex of the CD with 1 . To establish the structure of such a preferred inclusion complex, the interactions of 1 with β‐ and γ‐CDs were investigated by 1H‐NMR spectroscopy and molecular‐dynamics (MD) calculations. The 1H‐NMR measurements showed that the increase in solubility of 1 in H2O is dependent on the degree of its inclusion into the CD, which depends on the molecular size of the CD. The MD calculations suggested that the H‐bond interactions are sufficiently strong to form a stable [ 1 /γ‐CD] complex, in which the lipophilic rings C, D, and E of 1 are fully inserted into the molecular cavity of γ‐CD, thus forming a kind of structure covered by a hydrophilic molecular capsule, while such an interaction mode is impossible for α‐ or β‐CD.  相似文献   

5.
This work reports the elusive structural evidence for the [4]pseudorotaxane of β‐cyclodextrin (β‐CD) with coffee chlorogenic acid (CGA), a conjugate of caffeic acid (CFA) and quinic acid (QNA). A single‐crystal X‐ray structure analysis of the inclusion complex β‐cyclodextrin–chlorogenic acid–water (2/2/17), 2C42H70O35·2C16H18O9·17H2O, reveals that CGA threads through β‐CD and assembles via O—H…O hydrogen bonds and parallel‐displaced π–π interactions in the twofold symmetry‐related dimer yielding a [4]pseudorotaxane, which is crystallographically observed for the first time in CD inclusion complexes. The encapsulation of the aromatic ring and C=C—C(=O)O chain in the β‐CD dimeric cavity indicates that the CFA moiety plays a determinant role in complexation. This is in agreement with the DFT‐derived relative thermodynamic stabilities of the trimodal β‐CD–CGA inclusion complexes, that is, β‐CD complexed with different CGA components: C=C—C(=O)O chain > cyclohexane ring > aromatic ring. The complexation stability is further enhanced in the dimeric β‐CD–CGA complex, with the CFA moiety totally enclosed in the β‐CD dimeric cavity.  相似文献   

6.
A novel one‐step approach is reported to prepare thermosensitive hydrogels simply by using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD)/glycidyl methacrylate (GMA)/N‐isopropylacrylamide (NIPAM) system. From GMA and HP‐β‐CD, HP‐β‐CD/GMA inclusion complex was prepared and identified with NMR, FTIR, and UV‐vis spectroscopies. GMA in the form of HP‐β‐CD/GMA complex was copolymerized with NIPAM in water with K2S2O8 as initiator, yielding hydrogels designated as poly(NIPAM‐CD‐GMA). The inclusion of CD in the hydrogels was confirmed by FTIR spectroscopy. The contents of CD and GMA placed considerable influence on the swelling ratio and temperature‐sensitivity of the produced hydrogels. The hydrogels bearing CD moieties showed higher swelling ratio and temperature‐sensitivity when compared with that without CD. The porous structure of the hydrogels containing CD was observed in the SEM images. Relevant mechanism of the ring‐opening reaction of epoxide groups in GMA, the subsequent crosslinking reactions and the formation of hydrogels containing CD moieties were proposed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2193–2201, 2008  相似文献   

7.
A photoresponsive microgel is designed by the combination of a noncovalent assembly strategy with a covalent cross‐linking method. End‐functionalized poly(ethylene glycol) with azobenzene [(PEG‐(Azo)2)] was mixed with acrylate‐modified β‐CD (β‐CD‐MAA) to form photoresponsive inclusion complex through host–guest interaction. The above photoresponsive complex was cross‐linked by thiol‐functionalized PEG (PEG‐dithiol) via Michael addition click reaction. The photoreversibility of resulted microgel was studied by TEM, UV–Vis spectroscopy, and 1H NMR measurements. The characterization results indicated that the reversible size changes of the microgel could be achieved by alternative UV–Vis irradiations with good repeatability.  相似文献   

8.
Complexations between three oridonin derivatives and β‐cyclodextrin (βCD) were studied by nuclear magnetic resonance (NMR) method. Job's plots for complexes were depicted by 1H NMR spectra chemical shifts, which proved the 1:1 stoichiometry inclusion complex formation between each derivative and βCD. Two‐dimensional rotating frame overhauser effect spectroscopy (2D ROESY) support the above conclusion and also proved that ring A of each oridonin derivative deeply enters into hydrophobic cavity from the wider rim and the other parts are outside the cavity. Apparent formation constants (Ka) of complexes between three oridonin derivatives and two CDs are calculated according to Scott's equation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A suspension of (−)-gallocatechin gallate (GCg) and caffeine in water afforded two kinds of complexes, the 1:2 and 2:2 complexes of GCg and caffeine. The crystal structures of the two complexes were determined by X-ray crystallography. The driving force for the formation of the 1:2 and 2:2 complexes was thought to be mainly π-π interactions between the A, B′ rings of GCg and the six-membered rings of caffeines, and those between the B ring of GCg and caffeine, the B′ ring of GCg and caffeine, and the A rings of GCgs, respectively.  相似文献   

10.
Molecular motions of single polycarbonate (PC) chains threaded into crystalline γ‐cyclodextrin (γ‐CD) channels were examined using solid‐state 13C NMR and molecular dynamics simulations. The location of PC within the channels was confirmed by spin diffusion from a PC 13C label to natural‐abundance 13C of the γ‐CD. Rotor‐encoded longitudinal magnetization (RELM) (under 7‐kHz magic‐angle sample‐spinning conditions) was combined with multiple‐pulse 1H‐1H dipolar decoupling to detect large‐amplitude phenyl‐ring motion in both bulk PC and polycarbonate γ‐cyclodextrin inclusion compound (PC‐γ‐CD). The RELM results indicate that the phenyl rings in PC‐γ‐CD undergo 180° flips faster than 10 kHz just as in bulk PC. The molecular dynamics simulations show that the frequency of the phenyl‐ring flips depends on the cooperative motions of PC atoms and neighboring atoms of the γ‐CD channel. The distribution of protonated aromatic‐carbon laboratory and rotating‐frame 13C spin‐lattice relaxation rates for bulk PC and PC‐γ‐CD are similar but not identical. The distributions for both systems arise from site heterogeneities. For bulk PC, the heterogeneity is attributed to variations in local chain packing, and for PC‐γ‐CD the heterogeneity arises from variations in the location of the PC phenyl rings in the γ‐CD channel. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1271–1282, 2007  相似文献   

11.
Dioxobis(pyridine‐2‐thiolate‐N, S)molybdenum(VI) (MoO2(Py‐S)2), reacts with of 4‐methylpyridine (4‐MePy) in acetonitrile, by slow diffusion, to afford the title compound. This has been characterized by elemental analysis, IR and 1H NMR spectroscopy. The X‐ray single crystal structure of the complex is described. Structural studies reveal that the molecular structure consists of a β‐Mo8O26 polyanion with eight MoO6 distorted edge‐shared octahedra with short terminal Mo–O bonds (1.692–1.714 Å), bonds of intermediate length (1.887–1.999 Å) and long bonds (2.150–2.473 Å). Two different types of hydrogen bonds have been found: N–H···O (2.800–3.075 Å) and C–H···O (3.095–3.316 Å). The presence of π–π stacking interactions and strong hydrogen bonds are presumably responsible for the special disposition of the pyridinic rings around the polyanion cluster.  相似文献   

12.
Complexation of racemic citalopram with β‐cyclodextrin (β‐CD) in aqueous medium was investigated to determine atom‐accurate structure of the inclusion complexes. 1H‐NMR chemical shift change data of β‐CD cavity protons in the presence of citalopram confirmed the formation of 1 : 1 inclusion complexes. ROESY spectrum confirmed the presence of aromatic ring in the β‐CD cavity but whether one of the two or both rings was not clear. Molecular mechanics and molecular dynamic calculations showed the entry of fluoro‐ring from wider side of β‐CD cavity as the most favored mode of inclusion. Minimum energy computational models were analyzed for their accuracy in atomic coordinates by comparison of calculated and experimental intermolecular ROESY peak intensities, which were not found in agreement. Several least energy computational models were refined and analyzed till calculated and experimental intensities were compatible. The results demonstrate that computational models of CD complexes need to be analyzed for atom‐accuracy and quantitative ROESY analysis is a promising method. Moreover, the study also validates that the quantitative use of ROESY is feasible even with longer mixing times if peak intensity ratios instead of absolute intensities are used. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Desloratadine (DES) is an antihistamine used in the treatment of allergies and chronic urticaria. 1H NMR spectroscopic study of varying ratios of DES and β-Cyclodextrin (β-CD) in D2O suggests the formation of a 1:1 inclusion complex formed by the penetration of Cl-substituted aromatic ring into the β-CD cavity. The stoichiometry and binding constant of the complex were determined by Scott’s method.  相似文献   

14.
Hydroxyzine hydrochloride forms two 1:1 inclusion complexes with β‐cyclodextrin in aqueous solution as confirmed by the 1H NMR titration and ROESY studies. One complex is formed by the deep penetration of the chlorophenyl ring from the wider rim side, while the mode of entry of the phenyl ring into the β‐CD cavity is not clear. The stoichiometry and overall association constant of the complexes have been determined by the treatment of 1H NMR shift data. Some chiral discrimination by the host between the two enantiomers of hydroxyzine hydrochloride is also indicated.  相似文献   

15.
Sugars that incorporate the unsaturated carbonyl motif have become important synthetic targets not only as a result of their potential biological properties but also as precursors in the synthesis of many bioactive products. Moreover, little is known about the influence of the γ‐lactone moiety in the fragmentation pattern of furanose rings. Therefore, two α,β‐unsaturated γ‐lactones (butenolides) and two β‐hydroxy γ‐lactones, C? C linked to a furanose ring were studied using electrospray ionization FTICR mass spectrometry. The behaviour of the protonated and sodiated forms of the compounds under study has been compared considering their structural features. Fragmentation mechanisms were established and ion structures were proposed taking into account the MS2 and MS3 experiments, accurate mass measurements and semi‐empirical calculations. These inexpensive methods proved to be a valuable resource for proposing protonation sites and for the establishment of fragmentation pathways. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1.  相似文献   

17.
Catechins are the principle polyphenolic compounds in green tea; the four major compounds identified are epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) and epigallocatechin gallate (EGCg). Tea catechins tend to attach externally to their targets, such as viral envelopes, cell membranes, or the surface of low-density lipoproteins. In order to further our understanding of the molecular mobility of these compounds in cells, we examined the interaction of tea catechins with lipid membranes using solid-state NMR techniques. Our previous work indicated that the EGCg molecule is incorporated into lipid bilayers in a unique orientation. However, the detailed configuration, orientation, and dynamics of EGCg in lipid bilayers have not been well-characterized. Here, we investigated the orientation and dynamics of EGCg incorporated into multi-lamellar vesicles (MLVs) and bicelles using solid-state NMR spectroscopy.  相似文献   

18.
Measurements on camphor–cyclodextrin complexes reveal that precise association constants are more easily determined by chemical shift titration. Diffusion measurements using HR-DOSY allow easy following of the complex composition at different concentration ratios and estimation of the binding energy. Linear dependence of the diffusion coefficients on the molecular mass of free and associated cyclodextrins has been observed in D2O. The solution structures of α- and β-cyclodextrin complexes of camphor in D2O were deduced from intermolecular cross-relaxation data. Different preferential orientation in the 2:1 α-CD and 1:1 β-CD species have been derived in contrast to the loose 1:1 complex with γ-CD. Proton NMR chemical shift values proved to be much more sensitive to diastereomeric complex formation than diffusion coefficients.  相似文献   

19.
A series of star‐block poly(L ‐lactide)‐b‐poly(ethylene oxide) (SPLLA‐b‐PEO) copolymers were synthesized by ring‐opening polymerization (ROP) and DCC chemistry. The inclusion complexes of SPLLA‐b‐PEO copolymers and α‐cyclodextrin (α‐CD) were prepared with two different methods. FTIR, 1H NMR, WAXD, DSC, and TGA indicate that α‐CD only can be threaded onto PEO blocks in inclusion complexes of α‐CD‐SPLLA‐b‐PEO1.1K‐a, α‐CD‐SPLLA‐b‐PEO2K‐a, and α‐CD‐SPLLA‐b‐PEO5K‐a formed without heating and ultrasonication, and can be threaded onto both PLLA and PEO blocks in inclusion complexes of α‐CD‐SPLLA‐b‐PEO1.1K‐b, α‐CD‐SPLLA‐b‐PEO2K‐b, and α‐CD‐SPLLA‐b‐PEO5K‐b formed with heating and ultrasonication. Namely, α‐CDs can be threaded onto PEO blocks and the flanking bulky PLLA blocks of star‐block copolymers to form stable polyseudorotaxanes with heating method and ultrasonication to conquer the activation energy barrier of the inclusion complexation between bulky PLLA and α‐CD and the effect of the steric hindrance of star‐block copolymers. With the alteration of preparing methods, the inclusion complexes of α‐CD with the outer PEO block or PEO and PLLA blocks were obtained successfully. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2754–2762, 2009  相似文献   

20.
The effect of tin fluorophosphate‐glass (Pglass) nanoparticles on the polyamide‐6 (PA6) matrix in Pglass/PA6 hybrids has been investigated by 13C solid‐state nuclear magnetic resonance (NMR). The crystallinity determined by direct‐polarization 13C NMR combined with longitudinal relaxation‐time (T1C) filtering varied between 31 and 44%. T1C‐filtered 13C spectra with cross polarization clearly showed resonances of both the α‐ and γ‐crystalline phases of PA6, typically at ratios near 45:55, while the similarly processed neat polymer contained only the α‐phase. This suggests that the Pglass promotes the growth of the γ‐crystalline phase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 857–860, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号