首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2,5‐Dihydroxybenzoic acid (DHB) is one of the most widely used and studied matrix compounds in matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. However, the influence of ageing of the DHB solution on the MALDI mass spectra has not been yet systematically studied. In this work, the possible changes occurring in the acidified acetonitrile/water solution of the MALDI matrix compound DHB during 1‐year usage period have been monitored with MALDI‐Fourier transform ion cyclotron resonance mass spectrometer (MALDI‐FT‐ICR‐MS) and attenuated total reflectance Fourier transform infrared (ATR‐FT‐IR) spectroscopy. No significant ageing products have been detected. The ability of the aged DHB solution to act as a MALDI matrix was tested with two materials widely used in art and conservation – bone glue (a proteinaceous material) and shellac resin (a resinous material) – and good results were obtained. A number of peaks in the mass spectra measured from the DHB solution were identified, which can be used for internal calibration of the mass axis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Matrix assisted laser desorption ionization (MALDI) is a technique widely employed in the analysis of proteins and peptides, and nowadays it has also been applied to small molecules. There is little significant information regarding the in‐source dissociation processes on MALDI for natural products. Twenty‐six flavonoids (flavanones, flavones and flavonols) were analyzed by MALDI using different methods (with different matrices) and without matrix to comprehend the in‐source reactions and establish good analysis methods for these compounds. Depending on the class, structure and the laser intensity applied, methoxylated flavonoid aglycones can eliminate methyl radicals (˙CH3) in the source, such as flavonols, but lithium 2,4‐dihydroxybenzoate matrix suppresses the ˙CH3 eliminations and retro‐Diels–Alder cleavages in the source. All of the flavonoid O‐glycosides evaluated herein eliminated the sugar in source, even in the presence of the matrix, and its product radical ions ([M‐H‐sugar]?˙) were observed in the negative mode. The flavone C‐glycosides suffered intense dissociation, which was reduced by the addition of a matrix and the application of low laser intensity, mainly in the negative mode. Depending on the hydroxyl substituents, the [M‐H‐H]?˙ ion was observed with variable relative intensity in the spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Large signals from alpha-cyano-4-hydroxycinnamic acid (CHCA) matrix complexes with sodium and potassium ions were found to interfere with sensitive matrix-assisted laser desorption/ionization (MALDI) analysis of a hydrochloric acid digest of gelatine preparations. The nature of some selected matrix clusters was investigated by conventional post-source decay and LIFT-TOF/TOF experiments. The matrix clusters fragmented readily by neutral evaporation to give smaller sized matrix cluster species without matrix disintegration. Their characterization distinguished them from peptide signals, in particular from those that had the same nominal mass and differed only in the fractional part of the mass as encountered for gelatine-derived peptides. Knowledge of the molecular composition of these cluster species allowed using them for internal calibration of the MALDI mass spectra. The hydrolytic peptides could be analyzed with increased sensitivity when using 2,5-dihydroxy benzoic acid (DHB) as the MALDI matrix.  相似文献   

4.
For matrix‐assisted laser desorption/ionization (MALDI) mass spectra, undesirable ion contamination can occur due to the direct laser excitation of substrate materials (i.e., laser desorption/ionization (LDI)) if the samples do not completely cover the substrate surfaces. In this study, comparison is made of LDI processes on substrates of indium and silver, which easily emit their own ions upon laser irradiation, and conventional materials, stainless steel and gold. A simultaneous decrease of ion intensities with the number of laser pulses is observed as a common feature. By the application of an indium substrate to the MALDI mass spectrometry of alkali salts and alkylammonium salts mixed with matrices, 2,5‐dihydroxybenzoic acid (DHB) or N‐(4‐methoxybenzylidene)‐4‐butylaniline (MBBA), the mixing of LDI processes can be detected by the presence of indium ions in the mass spectra. This method has also been found to be useful for investigating the intrinsic properties of the MALDI matrices: DHB samples show an increase in the abundance of fragment ions of matrix molecules and cesium ions with the number of laser pulses irradiating the same sample spot; MBBA samples reveal a decrease in the level of background noise with an increase in the thickness of the sample layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The electron impact mass spectra of 2-cyclohexen-1-ol and of several of its 2H and 13C labelled analogues show that the molecular ions lose a methyl radical by a completely different means from the mechanism described previously. Moreover, the retro Diels–Alder reaction also proceeds in a non-classical way; in addition to the elimination of an olefinic molecule from unrearranged molecular ions, a second more important route implies a formal 1,3 allylic rearrangement prior to the retro Diels–Alder reaction. The mass spectra of a series of alkyl substituted homologues show that the competition between the two processes is closely related to the size of the olefinic moiety that is expelled.  相似文献   

6.
Flavan‐3‐ol monoglycosides, having four aglycons (+)‐catechin, (?)‐epicatechin, (?)‐epigallocatechin and epicatechin gallate monomeric units, are detected for the first time in Vitis vinifera L. cv. Merlot grape seeds and wine. These compounds were analyzed in red wine, seed and skin extracts by electrospray ionization quadrupole time of flight mass spectrometry (MS) in negative mode. Fragment ions derived from retro‐Diels Alder, heterocyclic ring fragmentation, benzofuran forming fragmentation and glycoside fragmentations were detected in targeted MS/MS mode. These compounds were not detected in skins; the comparative study showed evidence that these glycosylated compounds originate only from grape seeds. Our method allows for the identification of these glycosylated compounds based on their exact mass and their specific fragmentation pattern. However, exact glucose position on the monomeric units can not be determined. This work allowed us to partially identify 14 new flavan‐3‐ol monoglycosides, based on the exact mass of the molecular ions and their specific retro‐Diels Alder, heterocyclic ring fragmentation, benzofuran forming fragmentation and glycoside fragmentations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Fragmentation of different generations of poly(amidoamine) dendrimers was explored in five common MALDI matrices: 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-3-methoxycinnamic acid (FER), α-cyano-4-hydroxycinnamic acid (ACH), 2,4,6-trihydroxyacetophenone (THAP), and 3-hydroxypicolinic acid (HPA). Of these, DHB was the softest matrix and ACH produced significant fragment intensity already at MALDI threshold, FER and THAP being in between. HPA was not a convenient matrix for dendrimers and produced a specific fragmentation pattern. Fragmentation analysis was mainly concentrated on generation G1, which contains already all essential structural elements. Dendrimers showed complicated fragmentation behavior with multiple fragmentation channels in our MALDI experiments. The relative intensities of these channels depended selectively on choice of the matrix and showed dissimilar dependence on the laser pulse energy. This was attributed to different fragmentation mechanisms, due to different protonation pathways, occurring in the same MALDI plume. The fragmentation pathways were proposed for all observed fragmentation channels. All fragmentation sites of protonated ions were found to be directly attached to the protonation sites and the fragmentation was surplus charge driven in this sense. No charge remote fragmentation channels were detected. Cationized dendrimers showed higher stability than the protonated ions.  相似文献   

8.
Negative ion production from peptides and proteins was investigated by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. Although most research on peptide and protein identification with ionization by MALDI has involved the detection of positive ions, for some acidic peptides protonated molecules are not easily formed because the side chains of acidic residues are more likely to lose a proton and form a deprotonated species. After investigating more than 30 peptides and proteins in both positive and negative ion modes, [M–H] ions were detected in the negative ion mode for all peptides and proteins although the matrix used was 2,5‐dihydroxybenzoic acid (DHB), which is a good proton donor and favors the positive ion mode production of [M+H]+ ions. Even for highly basic peptides without an acidic site, such as myosin kinase inhibiting peptide and substance P, good negative ion signals were observed. Conversely, gastrin I (1‐14), a peptide without a highly basic site, will form positive ions. In addition, spectra obtained in the negative ion mode are usually cleaner due to absence of alkali metal adducts. This can be useful during precursor ion isolation for MS/MS studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Utilizing synchronized dual-polarity matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, we found good evidence of the incoherent production of positive and negative matrix ions. Using thin, homogeneous 2,5-dehydroxybenzoic acid (DHB) matrix films, positive and negative matrix ions were found to appear at different threshold laser fluences. The presence of molecular matrix ions of single charge polarity suggests that the existence of DHB ion-pairs may not be a prerequisite in MALDI. Photoelectrons induced by the laser excitation may assist the production of negative DHB ions, as shown in experiments conducted with stainless steel and glass substrates. At high laser fluences, the relative yield of positive and negative matrix ions remained constant when homogeneous matrix films were used, but it fluctuated significantly with inhomogeneous crystal morphology. This result is also inconsistent with the hypothesis that matrix ion-pairs are essential primary ions. Evidence from both low and high laser fluences suggests that the productions of positive and negative matrix ions in MALDI may occur via independent pathways.  相似文献   

10.
Complexity‐increasing Domino reactions comprising C?H allenylation, a Diels–Alder reaction, and a retro‐Diels–Alder reaction were realized by a versatile catalyst derived from earth‐abundant, non‐toxic manganese. The C?H activation/Diels–Alder/retro‐Diels–Alder alkyne annulation sequence provided step‐economical access to valuable indolone alkaloid derivatives through a facile organometallic C?H activation manifold with transformable pyridines.  相似文献   

11.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) is an excellent analytical technique for rapid analysis of a variety of molecules with straightforward sample pretreatment. The performance of MALDI‐TOF MS is largely dependent on matrix type, and the development of novel MALDI matrices has aroused wide interest. Herein, we devoted to seek more robust MALDI matrix for herbal saponins than previous reported, and ginsenoside Rb1, Re, and notoginsenoside R1 were used as model saponins. At the beginning of the present study, 2,5‐dihydroxybenzoic acid (DHB) was found to provide the highest intensity for saponins in four conventional MALDI matrices, yet the heterogeneous cocrystallization of DHB with analytes made signal acquisition somewhat “hit and miss.” Then, graphene oxide (GO) was proposed as an auxiliary matrix to improve the uniformity of DHB crystallization due to its monolayer structure and good dispersion, which could result in much better shot‐to‐shot and spot‐to‐spot reproducibility of saponin analysis. The satisfactory precision further demonstrated that minute quantities of GO (0.1 μg/spot) could greatly reduce the risk of instrument contamination caused by GO detachment from the MALDI target plate under vacuum. More importantly, the sensitivity and linearity of the standard curve for saponins were improved markedly by DHB‐GO composite matrix. Finally, the application of detecting the Rb1 in complex biological sample was exploited in rat plasma and proved it applicable for pharmacokinetic study quickly. This work not only opens a new field for applications of DHB‐GO in herbal saponin analysis but also offers new ideas for the development of composite matrices to improve MALDI MS performance.  相似文献   

12.
A novel method for on-tissue identification of proteins in spatially discrete regions is described using tryptic digestion followed by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) with MS/MS analysis. IMS is first used to reveal the protein and peptide spatial distribution in a tissue section and then a serial section is robotically spotted with small volumes of trypsin solution to carry out in situ protease digestion. After hydrolysis, 2,5-Dihydroxybenzoic acid (DHB) matrix solution is applied to the digested spots, with subsequent analysis by IMS to reveal the spatial distribution of the various tryptic fragments. Sequence determination of the tryptic fragments is performed using on-tissue MALDI MS/MS analysis directly from the individual digest spots. This protocol enables protein identification directly from tissue while preserving the spatial integrity of the tissue sample. The procedure is demonstrated with the identification of several proteins in the coronal sections of a rat brain.  相似文献   

13.
In this study we report an improved protocol that combines simplified sample preparation and micro-scale separation for mass spectrometric analysis of neuropeptides from individual neuroendocrine organs of crab Cancer borealis. A simple, one-step extraction method with commonly used matrix-assisted laser desorption/ionization (MALDI) matrix, 2,5-dihydroxybenzoic acid (DHB), in saturated aqueous solution, is employed for improved extraction of neuropeptides. Furthermore, a novel use of DHB as background electrolyte for capillary electrophoresis (CE) separation in the off-line coupling of CE to MALDI-Fourier transform mass spectrometric (FT-MS) detection is also explored. The new CE electrolyte exhibits full compatibility with MALDI-MS analysis of neuropeptides in that both the peptide extraction process and MALDI detection utilize DHB. In addition, enhanced resolving power and improved sensitivity are also observed for CE-MALDI-MS of peptide mixture analysis. Collectively, the use of DHB has simplified the extraction and reduced the sample loss by elimination of homogenizing, drying, and desalting processes. In the mean time, the concurrent use of DHB as CE separation buffer and subsequent MALDI matrix offers improved spectral quality by eliminating the interferences from typical CE electrolyte in MALDI detection.  相似文献   

14.
It has been described that ion yield in both positive- and negative-ion matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of peptides is often inhibited by trace amounts of alkali metals and that the MALDI mass spectra are contaminated by the interfering peaks originating from traces of alkali metals, even when sample preparation is carefully performed. Addition of serine to the commonly used MALDI matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) significantly improved and enhanced the signals of both protonated and deprotonated peptides, [M+H](+) and [M-H](-). The addition of serine to CHCA matrix eliminated the alkali-metal ion adducts, [M+Na](+) and [M+K](+), and the CHCA cluster ions from the mass spectra. Serine and serinephosphate as additives to CHCA enhanced and improved the formation of molecular-related ions of phosphopeptides in negative-ion MALDI mass spectra.  相似文献   

15.
Peptide mass fingerprinting (PMF) is a powerful technique in which experimentally measured m/z values of peptides resulting from a protein digest form the basis for a characteristic fingerprint of the intact protein. Due to its propensity to generate singly charged ions, along with its relative insensitivity to salts and buffers, matrix-assisted laser desorption and ionization (MALDI)-time-of-flight mass spectrometry (TOFMS) is the MS method of choice for PMF. The qualitative features of the mass spectrum can be selectively tuned by employing different methods to prepare the protein digest and matrix for MALDI-TOFMS. The selective tuning of MALDI mass spectra in order to optimize PMF is addressed here. Bovine serum albumin, carbonic anhydrase, cytochrome c, hemoglobin alpha- and beta-chain, and myoglobin were digested with trypsin and then analyzed by MALDI-TOFMS. 2,5-dihydroxybenzoic acid (DHB) and alpha-cyano-4-hydroxycinnamic acid (CHCA) were prepared using six different sample preparation methods: dried droplet, application of protein digest on MALDI plate followed by addition of matrix, dried droplet with vacuum drying, overlayer, sandwich, and dried droplet with heating. Improved results were obtained for the matrix alpha-cyano-4-hydroxycinnamic acid using a modification of the died droplet method in which the MALDI plate was heated to 80 °C prior to matrix application, which is supported by observations from scanning electron microscopy. Although each protein was found to have a different optimum sample preparation method for PMF, in general higher sequence coverage for PMF was obtained using DHB. The best PMF results were obtained when all of the mass spectral data for a particular protein digest was convolved together.  相似文献   

16.
Application of matrix‐assisted laser‐desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3‐hydroxypicolinic acid (3‐HPA) and α‐cyano‐4‐hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3‐HPA and CCA were found to be hot matrices, and 3‐HPA not as good as CCA and 2,5‐dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3‐HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive‐ion and negative‐ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (?80 Da) and phosphoric acid (?98 Da) from the phosphorylated‐residue‐containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for ‘sweet’ spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in‐solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass‐to‐charge values and LIFT TOF‐TOF spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This study demonstrates the application of 2,5-dihydrohybenzoic acid/aniline (DHB/An) and 2,5-dihydroxybenzoic acid/N,N-dimethylaniline (DHB/DMA) matrices for automated identification and quantitative analysis of native oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Both matrices are shown to be superior to pure DHB for native glycans in terms of signal intensities of analytes and homogeneity of sample distribution throughout the crystal layer. On-target formation of stable aniline Schiff base derivatives of glycans in DHB/An and the complete absence of such products in the mass spectra acquired in DHB/DMA matrix provide a platform for automated identification of reducing oligosaccharides in the MALDI mass spectra of complex samples. The study also shows how enhanced sensitivity is achieved with the use of these matrices and how the homogeneity of deposited sample material may be exploited for quick and accurate quantitative analysis of native glycan mixtures containing neutral and sialylated oligosaccharides in the low-nanogram to mid-picogram range.  相似文献   

18.
The specific matrix used in matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can have an effect on the molecules ionized from a tissue sample. The sensitivity for distinct classes of biomolecules can vary when employing different MALDI matrices. Here, we compare the intensities of various lipid subclasses measured by Fourier transform ion cyclotron resonance (FT‐ICR) IMS of murine liver tissue when using 9‐aminoacridine (9AA), 5‐chloro‐2‐mercaptobenzothiazole (CMBT), 1,5‐diaminonaphthalene (DAN), 2,5‐Dihydroxyacetophenone (DHA), and 2,5‐dihydroxybenzoic acid (DHB). Principal component analysis and receiver operating characteristic curve analysis revealed significant matrix effects on the relative signal intensities observed for different lipid subclasses and adducts. Comparison of spectral profiles and quantitative assessment of the number and intensity of species from each lipid subclass showed that each matrix produces unique lipid signals. In positive ion mode, matrix application methods played a role in the MALDI analysis for different cationic species. Comparisons of different methods for the application of DHA showed a significant increase in the intensity of sodiated and potassiated analytes when using an aerosol sprayer. In negative ion mode, lipid profiles generated using DAN were significantly different than all other matrices tested. This difference was found to be driven by modification of phosphatidylcholines during ionization that enables them to be detected in negative ion mode. These modified phosphatidylcholines are isomeric with common phosphatidylethanolamines confounding MALDI IMS analysis when using DAN. These results show an experimental basis of MALDI analyses when analyzing lipids from tissue and allow for more informed selection of MALDI matrices when performing lipid IMS experiments.  相似文献   

19.
In this work the effect in secondary ion mass spectrometry (SIMS) of several frequently used matrix‐assisted laser desorption/ionisation (MALDI) matrices on the secondary ion intensities of low molecular weight (m/z 400–800) organic dyes and a pharmaceutical is tested. Matrix (10?1 M) and analyte (10?2 M) solutions were made in methanol. Mixtures with several concentration ratios were prepared from these solutions and spincoated on Si substrates prior to time‐of‐flight (TOF)‐SIMS analysis. In some cases the presence of the MALDI matrices caused a considerable increase in the positive secondary (protonated) molecular ion signals. Enhancements of a factor of 20 and more were recorded. Generally, of the matrices used, 2,5‐dihydroxybenzoic acid and 2,4,6‐trihydroxyacetophenone brought about the highest intensity increases. It was also shown that matrix‐enhanced (ME‐)SIMS is capable of lowering the detection limits for molecule ions. However, the enhancement effect is strongly influenced by the analyte/matrix combination and its concentration ratio. As a result, finding an optimal analyte/matrix mixture can be a very time‐consuming process. Mostly, the presence of the matrices causes changes in the relative ion intensities in the TOF‐S‐SIMS spectra. Compared to the spectra recorded from samples without matrices, only a few additional peaks, such as signals that originate directly from the applied matrix or adduct ions, are observed in the mass spectra. Sometimes molecule ions and some characteristic fragments at high m/z values, that cannot be recorded without matrix, do appear in the spectrum when a matrix is present. In the negative mode no enhancement effect is observed on applying the studied MALDI matrices. The results obtained from samples treated with MALDI matrices are also compared to SIMS results for the same samples after Ag and Au metallisation (MetA‐SIMS). For three of the four tested compounds Au MetA‐SIMS resulted in higher ion yields than ME‐SIMS. For both techniques possible mechanisms that can account for the enhancement effect are proposed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Red pigment-concentrating hormone (RPCH), an octapeptide found in crustaceans and insects with the sequence pGlu-Leu-Asn-Phe-Ser-Pro-Gly-Trp-NH2, is an N- and C-terminally blocked uncharged peptide. These structural features are shared with many members of the larger adipokinetic hormone (AKH)/RPCH peptide family in insects. We have applied vacuum UV matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron mass spectrometry (FTMS) to the direct analysis of crustacean sinus gland tissues, using 2,5-dihydroxybenzoic acid (DHB) as the MALDI matrix, and have found that RPCH is detected in the cationized, [M + Na]+, form under conditions where other peptides in the direct tissue spectra are protonated without accompanying [M + Na]+ or [M + K]+ satellite peaks. The [M + H]+ ion for RPCH is not detected in tissue samples or for an RPCH standard, even when care is taken to eliminate metal ions. This behavior is not unprecedented; however, both direct tissue spectra and SORI-CID spectra provide no clues to suggest that the ionizing agent is a metal cation. In this communication, we characterize the MALDI-FTMS ionization and SORI-CID mass spectra of the [M + Na]+ and [M + K]+ ions from RPCH, and report on the detection of this neuropeptide in sinus gland tissues from the lobster Homarus americanus and the kelp crab Pugettia producta. We describe two strategies, an on-probe extraction procedure and a salt-doping approach, that can be applied to previously analyzed MALDI tissue samples to enhance and unmask sodiated peptides that may otherwise be mistaken for novel neuropeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号