首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resorbable poly(ester anhydride) networks based on ε‐caprolactone, L ‐lactide, and D,L ‐lactide oligomers were synthesized. The ring‐opening polymerization of the monomers yielded hydroxyl telechelic oligomers, which were end‐functionalized with succinic anhydride and reacted with methacrylic anhydride to yield dimethacrylated oligomers containing anhydride bonds. The degree of substitution, determined by 13C NMR, was over 85% for acid functionalization and over 90% for methacrylation. The crosslinking of the oligomers was carried out thermally with dibenzoyl peroxide at 120 °C, leading to polymer networks with glass‐transition temperatures about 10 °C higher than those of the constituent oligomers. In vitro degradation tests, in a phosphate buffer solution (pH 7.0) at 37 °C, revealed a rapid degradation of the networks. Crosslinked polymers based on lactides exhibited high water absorption and complete mass loss in 4 days. In ε‐caprolactone‐based networks, the length of the constituent oligomer determined the degradation: PCL5‐AH, formed from longer poly(ε‐caprolactone) (PCL) blocks, lost only 40% of its mass in 2 weeks, whereas PCL10‐AH, composed of shorter PCL blocks, completely degraded in 2 days. The degradation of PCL10‐AH showed characteristics of surface erosion, as the dimensions of the specimens decreased steadily and, according to Fourier transform infrared, labile anhydride bonds were still present after 90% mass loss. © 2003 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3788–3797, 2003  相似文献   

2.
In this contribution, we reported a design of shape memory networks of poly(ε‐caprolactone)s (PCLs) via POSS‐POSS interactions. First, a series of novel organic‐inorganic PCL stars with polyhedral oligomeric silsesquioxane (POSS) termini were synthesized via the combination of ring‐opening polymerization of ε‐caprolactone and the copper (I)‐catalyzed cycloaddition of alkynyl with azido groups. It was found that the organic‐inorganic PCL stars significantly displayed shape memory properties with about 100% of recovery. The morphological observation showed that in the organic‐inorganic PCL stars, the POSS cages at the ends of PCL chains were self‐organized into the spherical POSS microdomains with the size of 10 to 20 nm in diameter. The POSS microdomains behaved as the netpoints, resulting in the formation of physically crosslinked networks. The novel physically crosslinked networks endowed the organic‐inorganic nanocomposites with shape memory properties.  相似文献   

3.
Poly(ε‐caprolactone) (PCL) and poly(lactic acid) (PLA) networks were prepared from macromonomer diols functionalized with methacrylic anhydride, which allows one to get self‐crosslinkable polymers. Besides, both macromonomers were copolymerized to get copolymer networks with different compositions (namely, PCL/PLA: 0/100, 70/30, 50/50, 30/70, 100/0). Dielectric and calorimetric experiments allow one to conclude the microphase separation of the system: one phase made of pure PCL domains while the second one consists of caprolactone units, which somehow plasticize PLA and moves its main relaxation (glass transition) to lower temperatures. The effect of crosslinking PLA on the dynamics of the system was further investigated by comparing with the dynamics for linear PLA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 183–193, 2009  相似文献   

4.
Photocurable biodegradable multiblock copolymers were synthesized from poly(ε‐caprolactone) (PCL) diol and poly(L ‐lactide) (PLLA) diol with 4,4′‐(adipoyldioxy)dicinnamic acid (CAC) dichloride as a chain extender derived from adipoyl chloride and 4‐hydroxycinnamic acid, and they were characterized with Fourier transform infrared and 1H NMR spectroscopy, gel permeation chromatography, wide‐angle X‐ray diffraction, differential scanning calorimetry, and tensile tests. The copolymers were irradiated with a 400‐W high‐pressure mercury lamp from 30 min to 3 h to form a network structure in the absence of photoinitiators. The gel concentration increased with time, and a concentration of approximately 90% was obtained in 90–180 min for all the films. The photocuring hardly affected the crystallinity and melting temperature of the PCL segments but reduced the crystallinity of the PLLA segments. The mechanical properties, such as the tensile strength, modulus, and elongation, were significantly affected by the copolymer compositions and gel concentrations. Shape‐memory properties were determined with cyclic thermomechanical experiments. The CAC/PCL and CAC/PCL/PLLA (75/25) films photocured for 30–120 min showed good shape‐memory properties with strain fixity rates and recovery rates of approximately 100%. The formation of the network structure and the crystallization and melting of the PCL segments played very important roles for the typical shape‐memory properties. Finally, the degradation characteristics of these copolymers were investigated in a phosphate buffer solution at 37 °C with proteinase‐k and Pseudomonas cepacia lipase. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2426–2439, 2005  相似文献   

5.
A facile method to prepare shape memory polymers crosslinked by SiO2 is described. A series of biodegradable shape memory networks were obtained through thiol‐ene reaction triggered by UV irradiation between surface‐thiol‐modified SiO2 nanoparticles and end‐acrylate poly (ε‐caprolactone) (PCL). The highly selective thiol‐ene reaction ensured a uniform distribution of PCL chains between crosslinkers, contributing well‐defined network architecture with enhanced mechanical and shape‐memory properties. Thiol‐functionalized silica nanoparticle was characterized by using FTIR and XPS analysis, and 1H NMR spectra was used to confirm the successful modification of terminal hydroxyl group of PCL diol. Surface‐modified silica particles were found well dispersible in acrylate‐capped PCL supported by SEM. Thermal and crystalline behaviors of the obtained polymers were analyzed by DSC and XRD, and DMA measurement proved good mechanical property. The shape memory behavior and tensile strength was somewhat tunable by the length of PCL. Acceptably, sample SiO2‐SMP2k presented 99% recovery ratio and 97% shape fixity, and its relatively high tensile strength showed an attractive potential for biomedical application. Finally, a possible molecular mechanism accounting for the shape memory property was illustrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 692–701  相似文献   

6.
In this study, biodegradable shape‐memory polymers—polylactide‐co‐poly(glycolide‐co‐caprolactone) multiblock (PLAGC) copolymers—were synthesized by the coupling reaction of both macrodiols of polylactide (PLLA‐diol) and poly(glycolide‐co‐caprolactone) (PGC‐diol) in the presence of 1,6‐hexanediisocyanate as coupling agent. The copolymers formed were found to be thermoplastic and easily soluble in common solvents. The compositions of the copolymers were determined by 1H‐NMR and the influences of segment lengths and contents of both macrodiols on the properties of the PLAGC copolymers were investigated. It was found that the copolymers had adjustable mechanical properties which depended on contents and segment lengths of both macrodiols. The copolymers showed such good shape‐memory properties that the strain fixity rate (Rf) and the strain recovery rate (Rr) exceed 90%. By means of adjusting the compositions of the copolymers, PLAGC copolymers with transition temperatures around 45°C could be obtained. The degradation rate determination showed that the PLAGC copolymers have fast degradation rates, the mechanical strengths of the PLAGC copolymers would be completely lost within 1–2 months depending on molecular weights and contents of the both segments of PLLA and PGC. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
ABA triblock copolymers of L ‐lactide (LL) and ε‐caprolactone (CL), designated as PLL‐P(LL‐co‐CL)‐PLL, were synthesized via a two‐step ring‐opening polymerization in bulk using diethylene glycol and stannous octoate as the initiating system. In the first‐step reaction, an approximately 50:50 mol% P(LL‐co‐CL) random copolymer (prepolymer) was prepared as the middle (B) block. This was then chain extended in the second‐step reaction by terminal block polymerization with more L ‐lactide. The percentage yields of the triblock copolymers were in excess of 95%. The prepolymers and triblock copolymers were characterized using a combination of dilute‐solution viscometry, gel permeation chromatography (GPC), 1H‐ and 13C‐NMR, and differential scanning calorimetry (DSC). It was found that the molecular weight of the prepolymer was controlled primarily by the diethylene glycol concentration. All of the triblock copolymers had molecular weights higher than their respective prepolymers. 13C‐NMR analysis confirmed that the prepolymers contained at least some random character and that the triblock copolymers consisted of additional terminal PLL end (A) blocks. From their DSC curves, the triblock copolymers were seen to be semi‐crystalline in morphology. Their glass transition, solid‐state crystallization, and melting temperature ranges, together with their heats of melting, all increased as the PLL end (A) block length increased. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

9.
Chitosan‐graft‐poly(ϵ‐caprolactone) was prepared via the ring‐opening graft polymerization of ϵ‐caprolactone (CL) through chitosan with 4‐dimethylaminopyridine as a catalyst and water as a swelling agent. The graft content of PCL within the graft copolymer was adjusted by the feed ratio of CL to chitosan, and the highest grafting concentration of PCL was up to about 400%. Fourier transform infrared, 1H NMR, and two‐dimensional heteronuclear single quantum coherence analyses indicated that the amino group (NH2 CH‐2) of chitosan initiated the graft polymerization of CL through the backbone of chitosan, and the hydroxyl group (HO CH2–6) of chitosan did not participate in initiating the graft polymerization. The percentage of amino groups initiating the graft polymerization decreased with an increasing molar ratio of CL to chitosan in the feed, and this was attributed to the fact that the graft polymerization system increasingly became heterogeneous with an increasing feed ratio of CL to chitosan. The physical properties of the graft copolymers were characterized by thermogravimetric analysis and wide‐angle X‐ray diffraction, respectively. These suggested that the introduction of PCL grafts through the chitosan backbone would to some extent destroy the crystalline structure of chitosan, and the PCL grafts existed in an amorphous structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5353–5361, 2006  相似文献   

10.
The purpose of this study was to develop a degradable thermoset shape‐memory polymer from poly(β‐amino ester) (PBAE) networks. PBAE was chosen to be the crosslinker as it is biodegradable and has been projected as a potential material for biomedical applications. The low glass transition temperature of PBAE was increased to a biomedically relevant range using methyl methacrylate and methyl acrylate as the linear chain builders. The thermo‐mechanical properties of the networks were tailored such that they exhibited onset of glass transition temperature in between the room temperature (22 °C) and the body temperature (37 °C). Free‐strain recovery tests under heating and isothermal conditions were performed to quantify shape‐memory behavior. Testing showed that sampled programmed at 10 °C initiated deformation recovery at a lower temperature and a faster rate as compared to programming at 60 °C. Higher thermal conductivity of water enabled the samples to recover faster in water than in air. Samples with higher PBAE crosslinking densities exhibited higher normalized mass loss under regular and accelerated conditions. The amount of water absorption in the networks also increased with the crosslinker concentration independent of the testing conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

11.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

12.
Hydroxyl‐functionalized three‐arm poly(?‐caprolactone)s (PGCL‐OHs) were synthesized by the ring‐opening polymerization of ?‐caprolactone in the presence of glycerol (as the core) and stannous octoate. The effect of the feed ratio of ?‐caprolactone to glycerol on the ring‐opening polymerization was studied. These three‐arm PGCL‐OHs were then converted into double‐bond‐functionalized three‐arm poly(?‐caprolactone)s (PGCL‐Mas) by the reaction of PGCL‐OH with maleic anhydride in the melt at 130 °C. The quantitative conversion of hydroxyl functionality was achieved at a low molecular weight. The resulting PGCL‐OH and PGCL‐Ma were characterized with gel permeation chromatography, Fourier transform infrared, 1H NMR, 13C NMR, and differential scanning calorimetry. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1127–1141, 2002  相似文献   

13.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

14.
Silylated graphite oxide (sGO) was selected as suitable filler to improve the mechanical and electrical conductive properties of poly(ε‐caprolactone) (PCL). The composites of PCL and sGO were prepared by solution blending method. By modifying the surface of GO with silylation reagent (octyltrichlorosilane), the interlayer space of graphite oxide (GO) was increased and an excellent dispersion of the modified GO in the organic solvent and into the PCL matrix was achieved. The structures and physical properties of the sGO/PCL composites were characterized by the fourier transform infrared (FTIR), thermogravimetric analysis (TGA), wide angle X‐ray diffraction (WAXD) analysis, differential scanning calorimeter (DSC), tensile tests, dynamic mechanical analysis (DMA), and volume resistivity measurements. It indicated that the PCL/sGO composites formed an exfoliated structure from the WAXD study. The tensile strength and Young′s modulus of PCL increased with the addition of sGO. It was also found that a small amount of the sGO platelets in the composite could act as a nucleating agent and accelerated the crystallization of PCL. Further, the addition of the sGO platelets into the PCL matrix increased the volume electrical conductivity of PCL. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 294–301, 2010  相似文献   

15.
In this study, in situ polyurethane (PU) bionanocomposites of poly(ethylene glycol) (PEG)/poly(ε‐caprolactone) (PCL) polyols, bare cellulose nanocrystals (CNCs) and PCL‐grafted CNCs (G‐CNC) were synthesized with different contents of CNCs as cross‐linking agent to control the extent of phase separation. The effect of confining the chains between CNCs through urethane linkages and presence of PCL grafts on phase and crystallization behavior was evaluated. Crystallization and chemical networking were controlled to tune the shape fixity (SF) and recovery (SR) of the specimens, resulting in a SF of 100% for linear and PU nanocomposites of G‐CNC (0.5% and 1%) samples. The PU nanocomposite of G‐CNC (0.5%) was selected as the optimum sample with the highest SR of 100%. The effect of surface hydrophobicity on cellular behavior of Human Foreskin Fibroblast (as a normal cell) and HepG2 (as a cancerous cell) cells was evaluated. Cell adhesion analysis of the prepared samples indicated two different behaviors possibly due to the difference in the epigenetic nature of the cells and cellular integrin‐ based bonds showing a great potential for a variety of tissue engineering applications.  相似文献   

16.
Ethylene oxide (EO) has been block‐polymerized with both ε‐caprolactone (ε‐CL) and γ‐methyl‐ε‐caprolactone (MCL) through the combination of the anionic polymerization of EO and the ring‐opening polymerization (ROP) of ε‐CL and MCL. ω‐Hydroxyl poly(ethylene oxide) has been reacted with triethylaluminum (OH/Al = 1) and converted into a macroinitiator for ROP of ε‐CL and MCL. In toluene at room temperature, this polymerization leads to a bimodal molecular weight distribution as a result of monomer insertion in only some of the aluminum alkoxide bonds. However, in a more polar solvent (methylene chloride) added with 1 equiv of a Lewis base (pyridine), the expected diblock is formed selectively, and this indicates that aggregation of the active species in toluene is responsible for a macroinitiator efficiency of less than 1. A series of amphiphilic diblock copolymers with poly(ε‐caprolactone) (semicrystalline) and poly(γ‐methyl‐ε‐caprolactone) (amorphous) as the hydrophobic blocks have been prepared and characterized with size exclusion chromatography, 1H NMR, IR, and wide‐angle X‐ray scattering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1132–1142, 2004  相似文献   

17.
We report the synthesis of linear‐ and brush‐type poly(?‐caprolactone) (PCL) networks and investigate their thermal, mechanical, and shape memory behavior. Brush‐PCLs are prepared by ring‐opening metathesis polymerization (ROMP) of a norbornenyl‐functionalized ?‐caprolactone macromonomer (MM‐PCL) of different molecular weights. The linear analog, diacrylate end‐functionalized PCL (linear‐PCL), having comparable molecular weight of side chain of brush‐PCL is also synthesized. These polymers are thermally cured by a radical initiator in the presence of poly(ethylene glycol) diacrylate crosslinker. Thermal and linear viscoelastic properties as well as shape memory performance of the resulting PCL networks are investigated, and are significantly impacted by the PCL architecture. Therefore, our work highlights that tailoring macromolecular architecture is useful strategy to manipulate thermal, mechanical, and resulting shape memory properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3424–3433  相似文献   

18.
We report the ring‐opening homopolymerization of α‐allyl(valerolactone), compound 2 , and its copolymerization with ε‐caprolactone and δ‐valerolactone using stannous(II) catalysis. Although the polymerization of substituted δ‐valerolactones has received little attention for the preparation of functional polyesters, we found that compound 2 may be incorporated in controllable amounts into copolymers with other lactones, or simply homopolymerized to give a highly functionalized, novel poly(valerolactone). The presence of the pendant allyl substituent had a substantial impact on the thermal properties of these materials relative to conventional polyesters prepared from lactones, and most of the polymers presented here are liquids at room temperature. Dihydroxylation of the pendant allyl groups gave polyesters with increased hydrophilicity that degraded more or less rapidly depending on their extent of functionality. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1983–1990, 2002  相似文献   

19.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

20.
The growth and degradation of poly(glycolic acid) (PGA) and poly(ε‐caprolactone) (PCL) brushes were compared. Using tin (octanoate) as the catalyst, optimal conditions were found for growth of each polyester brush from the hydroxy‐terminated silicon surface via ring‐opening polymerization. PCL brushes grew thicker at elevated temperatures but the thickest PGA brushes grew at room temperature. Unlike bulk polyesters that can degrade under both acidic and basic conditions, the confined surface polyester brushes only degraded under neutral or basic conditions. The degradation mechanism of grafted polyester brushes was probed through a blocking test. It was shown that the terminal hydroxy groups of these polyester brushes were essential to the degradation process indicating a preferential backbiting mechanism. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4643–4649  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号