共查询到20条相似文献,搜索用时 15 毫秒
1.
Sergey S. Golotvin Rostislav Pol Ryan R. Sasaki Asya Nikitina Philip Keyes 《Magnetic resonance in chemistry : MRC》2012,50(6):429-435
Automated structure verification using 1H NMR data or a combination of 1H and heteronuclear single‐quantum correlation (HSQC) data is gaining more interest as a routine application for qualitative evaluation of large compound libraries produced by synthetic chemistry. The goal of this automated software method is to identify a manageable subset of compounds and data that require human review. In practice, the automated method will flag structure and data combinations that exhibit some inconsistency (i.e. strange chemical shifts, conflicts in multiplicity, or overestimated and underestimated integration values) and validate those that appear consistent. One drawback of this approach is that no automated system can guarantee that all passing structures are indeed correct structures. The major reason for this is that approaches using only 1H or even 1H and HSQC spectra often do not provide sufficient information to properly distinguish between similar structures. Therefore, current implementations of automated structure verification systems allow, in principle, false positive results. Presented in this work is a method that greatly reduces the probability of an automated validation system passing incorrect structures (i.e. false positives). This novel method was applied to automatically validate 127 non‐proprietary compounds from several commercial sources. Presented also is the impact of this approach on false positive and false negative results. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
Vassiliki G. Kontogianni Alexandra Primikyri Marianna Sakka Ioannis P. Gerothanassis 《Magnetic resonance in chemistry : MRC》2020,58(3):232-244
Artemisia annua is a promising and potent antimalarial herbal drug. This activity has been ascribed to its component artemisinin, a sesquiterpene lactone. The ability to determine artemisinin and its known analogs in plant extracts is an especially difficult task because the compounds are present in low concentrations, are thermolabile, and lack ultraviolet or fluorescent chromophores. We report herein a facile and rapid 1-D 1H, 1-D total correlation spectroscopy, 2-D 1H–13C heteronuclear single quantum coherence, and 1H–13C heteronuclear multiple bond correlation nuclear magnetic resonance techniques for the simultaneous identification and quantification of artemisinin and five of its analogs along with five flavonoids, an aromatic ketone, and camphor (in total, 13 compounds) in crude diethyl ether A. annua extract without the need of laborious isolation of the individual analytes. The above method was validated in terms of precision, linearity, and limit of detection. The analytical results were found to be in excellent agreement with those obtained with the use of the time consuming high-performance liquid chromatography with diode-array detection and liquid chromatography with tandem mass spectrometry for the compounds that standards were available. 相似文献
3.
Golotvin SS Vodopianov E Lefebvre BA Williams AJ Spitzer TD 《Magnetic resonance in chemistry : MRC》2006,44(5):524-538
A unique opportunity exists when an experimental NMR spectrum is obtained for which a specific chemical structure is anticipated. A process of Verification--the confirmation of a postulated structure--is now possible, as opposed to Elucidation-the de novo determination of a structure. A method for automated structure verification is suggested, which compares the chemical shifts, intensities and multiplicities of signals in an experimental 1H NMR spectrum with those from a predicted spectrum for the proposed structure. A match factor (MF) is produced and used to classify the spectrum-structure match into one of three categories, correct, ambiguous, or incorrect. The verification result is also augmented by the spectrum assignment obtained as part of the verification process. This method was tested on a set of synthetic spectra and several sets of experimental spectra, all of which were automatically prepared from raw data. Taking into account even the most problematic structures, with many labile protons present and poor prediction accuracy, 50% of all spectra can still be automatically verified without any false positives or negatives. In a blind test on a typical set of data, it is shown that fewer than 31% of the structures would need manual evaluation. This means that a system is possible whereby 69% of the spectra are prepared and evaluated automatically, and never need to be seen or evaluated by a human. 相似文献
4.
The validation of a molecular organic structure on the basis of 1D and 2D HSQC, COSY and HMBC NMR spectra is proposed as an alternative to the methods that are mainly based on chemical shift prediction. The CCASA software was written for this purpose. It provides an updated and improved implementation of the preceding computer‐assisted spectral assignment software. CCASA can be downloaded freely from http://www.univ‐reims.fr/LSD/JmnSoft/CASA . Two bioactive natural products, a triterpene and a benzophenone, were selected from literature data as examples. The tentative matching between the structure and the NMR data interpretation of the triterpene unexpectedly leads to the hypothesis of an incorrect structure. The LSD software was used to find an alternative structure that improved the 2D NMR data interpretation and the carbon‐13 chemical shift matching between experimental values and those produced by the nmrshiftdb2 prediction tool. The benzophenone example showed that signal assignment by means of chemical shift prediction can be replaced by elementary user‐supplied chemical shift and multiplicity constraints. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
《Magnetic resonance in chemistry : MRC》2003,41(4):237-245
A detailed analysis of the proton high‐field (600 MHz) NMR spectra of tomato juice and pulp is reported for the first time. A combination of J‐resolved, COSY, TOCSY, DOSY, 1H–13C HSQC and 1H–13C HMBC 2D sequences was used to assign each spin system and to separate the components of the complex patterns in the 1D overlapped proton spectra. To obtain resolved proton spectra of tomato pulps the high‐resolution magic angle spinning technique was used; a comparison with the liquid‐state NMR spectra of the corresponding juices was accomplished. On the basis of the assignments made, the chemical composition of tomato juices from two cultivars (Red Setter and Ciliegino) was determined. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
6.
Golotvin SS Vodopianov E Pol R Lefebvre BA Williams AJ Rutkowske RD Spitzer TD 《Magnetic resonance in chemistry : MRC》2007,45(10):803-813
A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. 相似文献
7.
Belén Rubio‐Ruiz Ana Conejo‐García Miguel A. Gallo Antonio Espinosa Antonio Entrena 《Magnetic resonance in chemistry : MRC》2012,50(6):466-469
1H and 13 C NMR spectral data of 13 new compounds containing a 4‐(dimethylamino)‐ or 4‐(pyrrolidin‐1‐yl)pyridinium moiety linked to the N‐9 or N‐3 nitrogen atom of an adenine moiety were assigned. 1D and 2D NMR experiments (DEPT, HSQC and HMBC) allowed the unequivocal identification of N‐9 and N‐3 isomers. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
8.
Djenisa H. A. Rocha Diana C. G. A. Pinto Raquel S. G. R. Seixas Artur M. S. Silva 《Magnetic resonance in chemistry : MRC》2014,52(1-2):47-50
Ten 3‐methylflavone derivatives were studied. Previously reported NMR data of some derivatives were corrected and/or completed, including the complete assignment of the two known natural derivatives. The complete 1H and 13C NMR assignments were achieved by combination of one‐dimensional and two‐dimensional NMR experiments. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
2‐Styrylchromones, although scarce in nature, constitute a group of oxygen heterocyclic compounds which have shown significant biological activities. New nitro‐2‐styrylchromones have been synthesised by the Baker–Venkataraman method, and the structure elucidation was accomplished using extensive 1D (1H, 13C) and 2D NMR spectroscopic studies (COSY, HSQC and HMBC experiments). Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
10.
《Magnetic resonance in chemistry : MRC》2003,41(9):747-749
We report the total assignments of the 13C and 1H NMR spectra of some 4‐methyl‐2‐oxo‐(2H)‐pyrido[1,2‐a]pyrimidine and 2‐methyl‐4‐oxo‐(4H)‐pyrido[1,2‐a]pyrimidine derivatives. The products were characterized by 1H and 13C NMR and reported data for similar compounds. No comparative data for the two sets of isomeric compounds with respect to 13C and 1H NMR have been reported to date. We made some detailed studies of the 2D NMR spectra of these compounds and observed that assignments made for non‐protonated carbon atoms by us and those reported in the literature for similar compounds need correction. The revised assignments were made on the basis of heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) techniques. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
11.
Structure determination of two new indole‐diterpenoids from Penicillium sp. CM‐7 by NMR spectroscopy
Yu‐Hong Zhang Sheng‐Dong Huang Hua‐Qi Pan Xi‐Qing Bian Zai‐Ying Wang Ai‐Hong Han Jiao Bai 《Magnetic resonance in chemistry : MRC》2014,52(6):306-309
Two new indole‐diterpenoids 4b‐deoxy‐1′‐O‐acetylpaxilline (1) and 4b‐deoxypenijanthine A (2) were isolated from the fermentation broth and the mycelia of the soil fungus Penicillium sp. CM‐7, along with three known structurally related compounds, 1′‐O‐acetylpaxilline (3), paspaline (4) and 3‐deoxo‐4b‐deoxypaxilline (5). The structures of compounds 1 and 2 were elucidated by extensive spectroscopic methods, especially 2D NMR, and their absolute configurations were suggested on the basis of the circular dichroism spectral analysis and the NOESY data. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
12.
A method of comparing predicted and experimental chemical shifts was used to confirm or refute postulated structures. 1H NMR spectra returned all true positives with a false positive rate of 4%. When an analogous procedure was adopted for 13C NMR spectra, the false positive rate dropped to 1%, whereas the more practical HSQC data yielded a false positive rate of 2%. If the HSQC results were combined with 1H results, a false positive rate of 1% resulted, 4 times more accurate than 1H alone. 相似文献
13.
Tsang‐Lin Hwang Michael Ronk Jacqueline E. Milne 《Magnetic resonance in chemistry : MRC》2013,51(2):89-94
In the pharmaceutical industry, regulatory expectations driven by patient safety considerations make structure elucidation of impurities at levels greater than 0.1% in the active pharmaceutical ingredient (API) of primary interest. Impurities can be generated from isomers in starting materials, or produced from different process steps toward the final API. Proton peaks belonging to different impurities could be potentially identified in the one‐dimensional 1H NMR spectrum, when evaluated in combination with two‐dimensional (2‐D) COSY and HSQC data. However, in 2‐D HMBC data, correlation responses from different impurities may overlap with those from the major component, causing uncertainty of long‐range proton to carbon correlations and quaternary carbon assignments. This observation prompts us to design the 2‐D selective‐TOCSY HMBC experiment to distinguish responses from different impurities in mixtures to obtain 2‐D NMR data for each impurity, thus eliminating the use of a chromatographic isolation step to obtain material for NMR analysis. This methodology is demonstrated for structure elucidation of impurities ranging from 8.2% in the raw material to 0.4% in the API in this study, and would be particularly useful for industrial samples in which the solubility and availability of material are not an issue. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
The precise estimation of the degree of derivatization of functional groups in polymers is important for determining their macroscopic properties. In this work, the quantitative estimation of the extent of esterification of novolac copolymers with di-tert-butyl dicarbonate was studied. Although the extent of esterification has been calculated previously by quantifying the signals from FT-IR and UV-Vis spectroscopy, these were restricted to monitoring the progress of the derivatization process. The 13C NMR signal intensities from the inverse-gated 1H-decoupled NMR spectrum have been used recently for the quantitative estimation of the degree of esterification of polymers. An alternative methodology has been suggested by us based on the fully relaxed 1H chemical shift intensities. However, since the proton signals of novolac resins are generally broad and overlapping, the proton decoupled 13C NMR spectrum was used to identify the 1H NMR signals using the 2-D HSQC technique. A TOCSY experiment was also performed to confirm further the 1H NMR signal assignments and, finally, the deconvoluted 1H NMR spectrum was used for the calculation of the extent of derivatization. 相似文献
15.
This article describes new versions of the DEPT phase-edited heteronuclear single quantum correlation (HSQC) pulse sequence with sensitivity enhancement. The sequences incorporate frequency-swept carbon and proton pulses. The new experiments are inherently robust, well-suited for a high-throughput setting in which sample-to-sample variations may be ignored. The observed signal has the obvious benefit of sensitivity enhancement resulting from the preservation of two magnetization transfer pathways. The two pathways are maintained even in the version of the sequence in which all pulses are frequency-swept. There is an additional signal gain of roughly 10% that derives from the use of both proton and carbon frequency-swept pulses. Furthermore, the sequences use J compensation to provide optimal signal over a range of heteronuclear coupling constants. We demonstrate that the new sequences offer good sensitivity and perform well even when the NMR probe is deliberately mistuned. 相似文献
16.
Pseudo‐meta and pseudo‐para diamino‐octafluoro[2.2]paracyclophanes are challenging to separate either by chromatography or recrystallization, but through the use of a mixture of the two isomers, the 1H, 19F, and 13C NMR spectra of these compounds have been fully and unambiguously assigned using 1H COSY, 1H‐19F HOESY, 1H‐13C HSQC, 1H‐13C HMBC, and 19F‐13C HSQC techniques. This permits the easy identification of either of the individual isomers. In addition, the 13C spectrum of the pseudo‐ortho analogue is reported and assigned for the first time. The gem shift effect in this series of bridge‐fluorinated paracyclophanes serves to deshield 1H resonances and shield 13C. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
17.
Aline Lima de Oliveira Carlos Henrique Alves de Oliveira Laura Maia Mairink Francine Pazini Ricardo Menegatti Luciano Morais Lião 《Magnetic resonance in chemistry : MRC》2011,49(8):537-542
Complete assignment of 1H and 13C NMR chemical shifts and J(1H/1H and 1H/19F) coupling constants for 22 1‐phenyl‐1H‐pyrazoles' derivates were performed using the concerted application of 1H 1D and 1H, 13C 2D gs‐HSQC and gs‐HMBC experiments. All 1‐phenyl‐1H‐pyrazoles' derivatives were synthesized as described by Finar and co‐workers. The formylated 1‐phenyl‐1H‐pyrazoles' derivatives were performed under Duff's conditions. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
《Magnetic resonance in chemistry : MRC》2003,41(1):77-79
The complete assignment of the 1H and 13C NMR spectra of the title enediones, bearing as substituents N‐aziridinyl (a novel compound), methoxy, chloro and methylsulfanyl, is reported. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
19.
N‐acetyl‐4‐nitrotryptophan methyl ester (2), N‐acetyl‐5‐nitrotryptophan methyl ester (3), N‐acetyl‐6‐nitrotryptophan methyl ester (4) and N‐acetyl‐7‐nitrotryptophan methyl ester (5) were synthesized through a modified malonic ester reaction of the appropriate nitrogramine analogs followed by methylation with BF3‐methanol. Assignments of the 1H and 13C NMR chemical shifts were made using a combination of 1H–1H COSY, 1H–13C HETCOR and 1H–13C selective INEPT experiments. Copyright © 2008 Crown in the right of Canada. Published by John Wiley & Sons, Ltd 相似文献
20.
《Magnetic resonance in chemistry : MRC》2002,40(7):477-479
We report the 1H NMR and 13C NMR chemical shifts and J(H,H), J(H,F) and J(C,F) coupling constants of 13 2,4‐diamino‐10‐methylpyrimido[4,5‐b]‐5‐quinolone derivatives, some of them with moderate activity against Plasmodium falciparum in vitro. They were characterized and assigned on the basis of 1H, 13C and 13C–1H (short‐ and long‐range) correlated spectra. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献