首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper concerns the study of the numerical approximation for the following initialboundary value problem in the unit ball Ω of with Dirichlet boundary conditions, in the subcritical case. More precisely, we study the set of initial values in C0(Ω) for which the resulting solution of (NLH) is global. We obtain very precise information about a specific two-dimensional slice of , which (necessarily) contains sign-changing initial values. As a consequence of our study, we show that is not convex. This contrasts with the case of nonnegative initial values, where the analogous set is known to be convex.  相似文献   

10.
In this note, a non‐standard finite difference (NSFD) scheme is proposed for an advection‐diffusion‐reaction equation with nonlinear reaction term. We first study the diffusion‐free case of this equation, that is, an advection‐reaction equation. Two exact finite difference schemes are constructed for the advection‐reaction equation by the method of characteristics. As these exact schemes are complicated and are not convenient to use, an NSFD scheme is derived from the exact scheme. Then, the NSFD scheme for the advection‐reaction equation is combined with a finite difference space‐approximation of the diffusion term to provide a NSFD scheme for the advection‐diffusion‐reaction equation. This new scheme could preserve the fixed points, the positivity, and the boundedness of the solution of the original equation. Numerical experiments verify the validity of our analytical results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

11.
12.
An improved positivity‐preserving nonstandard finite difference scheme for the linear damped wave equation is presented. Unlike an earlier such scheme developed by the authors, the new scheme involves three time levels and is therefore able to include the effects of the equation's relaxation coefficient. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential, 2005  相似文献   

13.
一类具有非线性中立型的非线性变时滞差分方程的振动性   总被引:1,自引:0,他引:1  
考虑具有非线性中立项的二阶非线性变时滞差分方程,获得了该方程及其差分算子振动的充分条件.  相似文献   

14.
Abstract

In this paper, we focus on three inverse problems for a coupled model from temperature-seepage field in high-dimensional spaces. These inverse problems aim to determine an unknown heat transfer coefficient and a source sink term in seepage continuity equation with specified initial-boundary conditions and additional measurements. Some finite difference schemes of coupled equations are presented and analyzed.Three algorithms for these inverse problems are proposed. Some numerical experiments are provided to assert the accuracy and efficiency of proposed algorithms.  相似文献   

15.
This paper aims at the development of numerical schemes for nonlinear reaction diffusion problems with a convection that blows up in a finite time. A full discretization of this problem that preserves the blow — up property is presented as well as a numerical simulation. Efficiency of the method is derived via a numerical comparison with a classical scheme based on the Runge Kutta scheme.  相似文献   

16.
We construct a finite difference scheme for the ordinary differential equation describing the traveling wave solutions to the Burgers equation. This difference equation has the property that its solution can be calculated. Our procedure for determining this solution follows closely the analysis used to obtain the traveling wave solutions to the original ordinary differential equation. The finite difference scheme follows directly from application of the nonstandard rules proposed by Mickens. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 815–820, 1998  相似文献   

17.
18.
A one-dimensional nonlinear heat equation with a singular term   总被引:1,自引:0,他引:1  
In this paper we are concerned with the Dirichlet problem for the one-dimensional nonlinear heat equation with a singular term:
  相似文献   

19.
For a nonlinear diffusion equation with a singular Neumann boundary condition, we devise a difference scheme which represents faithfully the properties of the original continuous boundary value problem. We use non‐uniform mesh in order to adequately represent the spatial behavior of the quenching solution near the boundary. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 429–440, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10013  相似文献   

20.
Newton’s method is most frequently used to find the roots of a nonlinear algebraic equation. The convergence domain of Newton’s method can be expanded by applying a generalization known as the continuous analogue of Newton’s method. For the classical and generalized Newton methods, an effective root-finding technique is proposed that simultaneously determines root multiplicity. Roots of high multiplicity (up to 10) can be calculated with a small error. The technique is illustrated using numerical examples.  相似文献   

$ \left\{ \begin{gathered} u_t - u_{xx} = f\left( u \right), x \in \left( {0,1} \right), t \in \left( {0,T} \right), \hfill \\ u\left( {0,t} \right) = 0, u_x \left( {1,t} \right) = 0, t \in \left( {0,T} \right), \hfill \\ u\left( {x,0} \right) = u_0 \left( x \right), x \in \left[ {0,1} \right], \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} u_t - u_{xx} = f\left( u \right), x \in \left( {0,1} \right), t \in \left( {0,T} \right), \hfill \\ u\left( {0,t} \right) = 0, u_x \left( {1,t} \right) = 0, t \in \left( {0,T} \right), \hfill \\ u\left( {x,0} \right) = u_0 \left( x \right), x \in \left[ {0,1} \right], \hfill \\ \end{gathered} \right.   相似文献   

2.
The numerical solution of the heat equation in unbounded domains (for a 1D problem‐semi‐infinite line and for a 2D one semi‐infinite strip) is considered. The artificial boundaries are introduced and the exact artificial boundary conditions are derived. The original problems are transformed into problems on finite domains. The space semi‐discretization by finite element method and the full approximation by the implicit‐explicit Euler's method are presented. The solvability of the full discretization schemes is analyzed. Computational examples demonstrate the accuracy and the efficiency of the algorithms. Also, the behavior of blowing up solutions is examined numerically. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 379–399, 2007  相似文献   

3.
A positivity‐preserving nonstandard finite difference scheme is constructed to solve an initial‐boundary value problem involving heat transfer described by the Maxwell‐Cattaneo thermal conduction law, i.e., a modified form of the classical Fourier flux relation. The resulting heat transport equation is the damped wave equation, a PDE of hyperbolic type. In addition, exact analytical solutions are given, special cases are mentioned, and it is noted that the positivity condition is equivalent to the usual linear stability criteria. Finally, solution profiles are plotted and possible extensions to a delayed diffusion equation and nonlinear reaction‐diffusion systems are discussed. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004.  相似文献   

4.
This paper is devoted to study of a nonlinear heat equation with a viscoelastic term associated with Robin conditions. At first, by the Faedo–Galerkin and the compactness method, we prove existence, uniqueness, and regularity of a weak solution. Next, we prove that any weak solution with negative initial energy will blow up in finite time. Finally, by the construction of a suitable Lyapunov functional, we give a sufficient condition to guarantee the global existence and exponential decay of weak solutions.  相似文献   

5.
We study the nonlinear parabolic equation , in Rn×(0,∞) with boundary condition u(x,0)=u0(x), not necessarily bounded function. The nonlinearity φ((x,t),u) is required to satisfy some conditions related to the parabolic Kato class P(Rn) while allowing existence of positive solutions of the equation and continuity of such solutions. Our approach is based on potential theory tools.  相似文献   

6.
Two coupled PDEs, where one has a diffusion term and the other does not, are defined to be space‐dimension systems. We show how to construct nonstandard finite difference schemes for such systems and demonstrate that they are positivity‐preserving. These methods also allow the calculation of an explicit functional relationships between the time and space step‐sizes. The case of water flowing through fractured bedrock is used to illustrate our procedure. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

7.
The boundary value problem Δu + λeu = 0 where u = 0 on the boundary is often referred to as “the Bratu problem.” The Bratu problem with cylindrical radial operators, also known as the cylindrical Bratu‐Gelfand problem, is considered here. It is a nonlinear eigenvalue problem with two known bifurcated solutions for λ < λc, no solutions for λ > λc and a unique solution when λ = λc. Numerical solutions to the Bratu‐Gelfand problem at the critical value of λc = 2 are computed using nonstandard finite‐difference schemes known as Mickens finite differences. Comparison of numerical results obtained by solving the Bratu‐Gelfand problem using a Mickens discretization with results obtained using standard finite differences for λ < 2 are given, which illustrate the superiority of the nonstandard scheme. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 327–337, 2004  相似文献   

8.
We study a nonlinear degenerate parabolic equation of the type accompanied by an initial datum and mixed boundary conditions. The symbol [ · ]+ denotes the usual cutoff function. The problem represents a model of a reactive solute transport in porous media. The exponent p fulfills p ∈ (0, 1). This limits the regularity of a solution and leads to inconveniences in the error analysis. We design a new robust linear numerical scheme for the time discretization. This is based on a suitable combination of the backward Euler method and a linear relaxation scheme. We prove the convergence of relaxation iterations on each time point ti. We derive the error estimates in suitable function spaces for all values of p ∈ (0, 1). © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号