首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Anionic polymerization and high‐vacuum techniques were used to prepare a series of well‐defined polyisoprene, polybutadiene, and polystyrene polymacromonomers. The procedure involved (1) the synthesis of styrenic macromonomers in benzene by the selective reaction of the corresponding macroanion with the chlorine of 4‐(chlorodimethylsilyl)styrene (CDMSS) and (2) the in situ anionic polymerization of the macromonomer without previous isolation. The synthesis of the macromonomers [polyisoprene macromonomer: 11 samples, weight‐average molecular weight (Mw) = 1000–18,000; polybutadiene macromonomer: 5 samples, Mw = 2000–4000; and polystyrene macromonomer: 2 samples, Mw = 1300 and 3600] was monitored by size exclusion chromatography with refractive index/ultraviolet detectors. Selectivity studies with CDMSS indicated that polybutadienyllithum had the highest selectivity, and polystryryllithium the lowest. From kinetic studies it was concluded that the polymerization half‐life times were longer but comparable to those of styrene, and they appeared to only slightly depend on the molecular weight of the macromonomer chain (at least for low degrees of polymerization of the polymacromonomer and for Mw < 7000 for the macromonomer side chain). Dependence on the polymerization degree of the polymacromonomer product was also observed. All the prepared polymacromonomers were characterized by size exclusion chromatography with refractive index, ultraviolet and two‐angle laser light scattering detectors, and NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1038–1048, 2005  相似文献   

3.
4.
A solid‐supported samarium enolate successfully initiated the polymerization of 2‐(trimethylsilyloxy)ethyl methacrylate (TMS‐HEMA) through the living anionic process. In addition, the silyl group was readily removed by treatment of the beads with a weak acid to afford the corresponding well‐defined poly(methacrylate) having a hydroxyethyl group in the side chain (PHEMA). The hydroxyl group of the immobilized PHEMA on the beads was successfully acetylated to give poly(2‐acetoxyethyl methacrylate), which could be quantitatively isolated from the beads by trifluoroacetic acid treatment. Moreover, the hydroxyl group of the immobilized PHEMA could be utilized as an initiator for acid promoted ring opening polymerization of lactone to yield the corresponding graft copolymer. In this method, the residual and excess reagents could be removed by filtration, which demonstrated the applicability of the present technique to a novel method for construction of functional polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4417–4423, 2004  相似文献   

5.
6.
The living anionic copolymerization of styrene with 1,2‐bis(4′‐ethenylphenyl)ethane (1) or p‐divinylbenzene (PDVB) with sec‐butyllithium in benzene was carried out. The copolymerizations of styrene with more than 20 mol % of 1 gave insoluble polymers in quantitative yields, whereas the yield showed the maximum (97%) for PDVB at 15 mol %. The content of unreacted double bonds of the network polymer formed by the copolymerization with PDVB was four times as large as that formed with 1. Gas chromatographic analyses of the copolymerization suggested close reactivities of the double bonds between styrene and 1, whereas a rapid consumption of PDVB compared with styrene was observed in their copolymerization. The r1, r2,and r1r2 values for the copolymerization of styrene with 1 were determined to be 1.00, 1.09, and 1.09, respectively, which suggests that a more homogeneous network structure can be attained with 1. The living chain end of the produced living gel initiated the polymerization of tert‐butyl methacrylate to give an insoluble block copolymer in a good yield. The hydrolysis of the ester group of the block copolymer led to an amphiphilic copolymer that exhibited a characteristic property of a hydrogel. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2543–2547, 2000  相似文献   

7.
The kinetics of the initiation and propagation of the ring‐opening metathesis polymerization of exo,exo‐5,6‐bis(methoxycarbonyl)‐7‐oxabicyclo[2.2.1]hept‐2‐ene catalyzed by Grubbs' catalyst (Cl2(PCy3)2Ru?CHPh) were measured by ultraviolet–visible and 1H NMR spectroscopy, respectively. Activation parameters for these processes were also determined. Although the ratio of the rate constant of initiation to the rate constant of propagation was determined to be less than 1 for this system, this polymerization showed many of the characteristics of a living system, including low polydispersities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2125–2131, 2003  相似文献   

8.
The metal‐catalyzed living radical polymerization of methyl methacrylate and styrene initiated with freshly prepared p‐toluenesulfonyl iodide (TsI) and catalyzed with CuX/2,2′‐bipyridine (bpy), where X is Cl, Br, or I, and various self‐regulated copper‐based catalytic systems, such as copper/bpy, copper(I) oxide/bpy, copper(I) sulfide/bpy, copper(I) selenide/bpy, and copper(I) telluride/bpy, is reported. The exchange of C? I into C? Br and C? Cl takes place when the living radical polymerization of methyl methacrylate is catalyzed by copper(I) bromide/bpy and copper(I) chloride/bpy, respectively. Therefore, the use of the TsI initiator facilitates the synthesis, starting from a single initiator, of poly(methyl methacrylate) containing C? I, C? Br, and C? Cl chain ends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3920–3931, 2005  相似文献   

9.
The effects of operating variables on the kinetic behavior of the emulsion copolymerization of vinylidene chloride (VDC) and methyl methacrylate (MMA) were examined at 50 °C with sodium lauryl sulfate as an emulsifier and potassium persulfate as an initiator, respectively. The number of polymer particles produced increased in proportion to the 1.0 power of the initial emulsifier concentration and to the 0.3 power of the initial initiator concentration and decreased with an increasing content of MMA in the initial monomer charge. The rate of copolymerization was proportional to the 0.4 power of the initial emulsifier concentration and to the 0.5 power of the initial initiator concentration and increased with an increasing content of MMA in the initial monomer charge. The molecular weight of copolymer produced decreased drastically with an increasing content of VDC in the initial monomer charge. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1275–1284, 2002  相似文献   

10.
Block copolymers of the A‐B‐C‐B‐A type were synthesized for the first time via the activated anionic polymerization of hexanelactam (HL) with Na‐HL as an initiator and macroactivators [or polymeric activators (PACs)] as elastificators for nylon‐6. The PACs were prepared by the functionalization of telechelic hydroxyl‐terminated poly(ethylene oxide)–polyisoprene–poly(ethylene oxide) copolymers with different diisocyanates. Hexamethylene diisocyanate (1,6‐diisocyanatohexane) and isophorone diisocyanate (5‐isocyanate1‐isocyanatomethyl‐1,3,3‐trimetylcyclohexane) were used as functionalizing agents. This article reports on the effects that the various central elastomeric PAC blocks (type, content, and molecular weight) had on the polymerization kinetics and on the structure and molecular weights of the multiblock copolymers obtained. The copolymers were characterized spectroscopically. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 487–496, 2003  相似文献   

11.
Well‐defined high oil‐absorption resin was successfully prepared via living radical polymerization on surface of polystyrene resin‐supported N‐chlorosulfonamide group utilizing methyl methacrylate and butyl methacrylate as monomers, ferric trichloride/iminodiacetic acid (FeCl3/IDA) as catalyst system, pentaerythritol tetraacrylate as crosslinker, and L ‐ascorbic acid as reducing agent. The polymerization proceeded in a “living” polymerization manner as indicated by linearity kinetic plot of the polymerization. Effects of crosslinker, catalyst, macroinitiator, reducing agent on polymerization and absorption property were discussed in detail. The chemical structure of sorbent was determined by FTIR spectrometry. The oil‐absorption resin shows a toluene absorption capacity of 21 g g?1. The adsorption of oil behaves as pseudo‐first‐order kinetic model rather than pseudo‐second‐order kinetic model. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
Pseudo first‐order rate constants of the reaction of diethyl(ethyl cyanoacetato)aluminum [(C2H5)2Al(NCCHCOOC2H5)] with 17 fluorinated acrylates and methacrylates and five hydrocarbon analogs for references were investigated to examine the initiation reactivities of the anionic polymerization of fluorinated vinyl monomers to afford the reactivity order: CH2?C(CF3)COOC2H5 > CH2?C(CF3)COOCH(CH3)2 > CH2?CHCOOCH2C6F5 > CH2?C(CF3)COOC(CH3)3 > CH2?C(CF3)COOCH2C6F5 > CH2?C(CF3)COOCH(CF3)2 ≥ CH2?CHCOOCH3 > CH2?CHCOOCH2C6H5 ≥ CH2?C(CF3)COOCH2CF3 > CH2?C(CH3)COOCH2C6F5 > CH2?CHCOOCH2CF3 > CH2?CHCOOCH2C2F5 > CH2?CHCOOCH(CF3)2 > CH2?C(CH3)COOCH3 > CH2?C(CH3)COOCH2C6H5 ≥ CH2?C(CH3)COOCH2CH2C8F17 > CH2?C(CH3)COOCH(CH3)2 > CH2?C(CH3)COOCH2C2F5 ≥ CH2?C(CH3)COOCH2CF3. No rate constants for CH2?C(CH3)COOCH(CF3)2, CH2?CFCOOC(CH3)3, and CH2?CFCOOCH2C2F5 were obtained because of too fast polymerization. The incorporation of a trifluoromethyl group into the vinyl group enhanced the reactivity toward the delocalized carbanion. The reactivity of other fluorinated acrylates and methacrylates was concluded to approximately be controlled by the fluorine contents and the bulkiness of substituents of monomers. The reactivity was generally decreased by increasing fluorine contents of fluoroalkyl substituents in ester groups. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7011–7021, 2008  相似文献   

13.
Methyl methacrylate (MMA) polymerizations have been conducted in the presence of large excesses of N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl) nitroxide] (SG1) at 110°C. It is demonstrated that such a protocol does not improve control/livingness in the nitroxide mediated polymerization (NMP) of this monomer, instead substantial levels of disproportionation between the nitroxide and propagating radical (PMMA) results. The extent of the disproportionation reaction increased with the SG1 concentration, eventually becoming the sole end forming event. Significant disproportionation between SG1 and PMMA was also observed at substantially lower temperatures (45°C) in the presence of large excesses of SG1. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2194–2203, 2007  相似文献   

14.
A kinetic study of the living cationic polymerization of p‐methoxystyrene using 1‐(4‐methoxyphenyl)ethanol ( 1 )/B(C6F5)3 initiating system in a mixture of CH3CN with CH2Cl2 1:1 (v/v) at room temperature was carried out utilizing a wide variety of conditions. The polymerization proceeded in a living fashion even in the presence of a large amount of water ([H2O]/[B(C6F5)3] ratio up to 20) to afford polymers whose Mn increased in direct proportion to monomer conversion with fairly narrow MWDs (Mw/Mn ≤ 1.3). The investigation revealed that the rate of polymerization was first‐order in B(C6F5)3 concentration, while a negative order in H2O concentration close to ?2 was obtained. It was also found that the rate of polymerization decreased with lowering temperature, which could be attributed to a decreased concentration in free Lewis acid, the true coinitiator of polymerization. A mechanistic scheme to explain the kinetic behavior of living p‐methoxystyrene polymerization is proposed, which has been validated by PREDICI simulation on multiple‐data curves obtained by 1H NMR in situ polymerization experiment. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6928–6939, 2008  相似文献   

15.
In this study, we reported the synthesis of polyacrylonitrile (PAN) via living radical polymerization in N, N‐dimethylformamide using carbon tetrachloride as initiator, copper(II) chloride (CuCl2)/hexamethylenetetramine as catalyst system, and 2,2‐azobisisobutyronitrile as a high concentration of thermal radical initiator. The polymerization proceeded in controlled/living manner as indicated by first‐order kinetics of the polymerization with respect to the monomer concentration, linear increase of the molecular weight with monomer conversion and narrow polydispersity. Higher polymerization rate and narrower molecular weight distributions were observed with CuCl2 less than 50 ppm. The rate of polymerization showed a trend of increase along with temperature. The modified PAN containing amidoxime group was used for extraction of Ag(I) ions from aqueous solutions. The adsorption kinetics data indicated that the adsorption process followed pseudo‐second‐order rate model. The isotherm adsorption process could be described by the Freundlich isotherm model. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Anionic ring-opening polymerization (ROP) behavior of trans-cyclohexene carbonate (CHC) using metal alkoxides as initiators was investigated. As a result, lithium tert-butoxide-initiated ROP of CHC with a high-monomer concentration (10 M) at low temperature (−15 to −10°C) proceeded to afford a poly(trans-cyclohexene carbonate) (PCHC) without undesired side reactions such as mainly backbiting. The suppression of side reactions enables the control of the molecular weight (Mn = 2400–6100) of PCHC with low molar-mass dispersity values (Mw/Mn = 1.16–1.22). Furthermore, by increasing the feed ratio of the monomer to the initiator, the molecular weight increases proportionally, indicating a controllable polymerization. The results of a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, a kinetic study, and a chain extension experiment suggested a living nature of this ROP using lithium tert-butoxide.  相似文献   

17.
A novel catalyst system based on La(0)/hexamethylenetetramine (HMTA) complexes is used for single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) in the presence of ascorbic acid (VC) with carbon tetrachloride (CCl4) as a initiator and N,N‐dimethylformamide (DMF) as a solvent. Compared with SET‐LRP of AN in the absence of VC, monomer conversion is markedly increased. SET‐LRP of AN in the presence of VC is also conducted in the presence of air. The kinetic studies show that the polymerizations both in the absence of oxygen and in the presence of air proceed in a well‐controlled manner. With the respect to the polymerization in the absence of oxygen, the polymerization in the presence of air provides slower reaction rate and broader polydispersity. Effects of amount of VC, La, CCl4, and are investigated in detail. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4088–4094  相似文献   

18.
A series of imidazoline nitroxides with bulky spirocyclic moieties at the positions 2 or 5 of imidazole ring were synthesized using intramolecular 1,3‐dipolar cycloaddition in 2H‐imidazole 1‐oxides or 4H‐imidazole 3‐oxides with pent‐4‐enyl groups followed by isoxazolidine ring opening and oxidation. Capability of the nitroxides to control radical polymerization of methyl methacrylate (MMA) and styrene was investigated. For that purpose, alkoxyamines were synthesized from the aforementioned nitroxides and tert‐butyl α‐bromoisobutyrate. Homolysis rate constants of the alkoxyamines were measured and possible contributions of side reactions were quantified. Nitroxide‐mediated polymerization of styrene and MMA was studied using the alkoxyamines as initiators. MMA polymerization was found to proceed in controlled regime up to 55% of monomer conversion and the polymer obtained was able to reinitiate the polymerization of styrene. Quota of “living” chains estimated to reach 90%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 929–943  相似文献   

19.
Until recently, the primary living radical polymerization method available for preparing polyisoprene was nitroxide‐mediated radical polymerization, with reversible addition‐fragmentation chain transfer polymerization being applied only in a few cases within the last couple of years. We report here the preparation of polyisoprene by RAFT in the presence of the trithiocarbonate transfer agent S‐1‐dodecyl‐S′‐(r,r′‐dimethyl‐r′′‐acetic acid)trithiocarbonate and t‐butyl peroxide as the radical initiator. The kinetics of this polymerization at an optimized temperature of 125 °C and radical initiator concentration of 0.2 equiv relative to transfer agent have been studied in triplicate and demonstrate the living nature of the polymerization. These conditions resulted in polymers with narrow polydispersity indices, on the order of 1.2, with monomer conversions up to 30%. Retention of chain‐end functionality was demonstrated by polymerizing styrene as a second block from a polyisoprene macrotransfer agent, resulting in a block copolymer presenting a unimodal gel permeation chromatogram, and narrow molecular weight distribution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4100–4108, 2007  相似文献   

20.
Kinetic studies of the atom transfer radical polymerization (ATRP) of styrene are reported, with the particular aim of determining radical‐radical termination rate coefficients (<kt>). The reactions are analyzed using the persistent radical effect (PRE) model. Using this model, average radical‐radical termination rate coefficients are evaluated. Under appropriate ATRP catalyst concentrations, <kt> values of approximately 2 × 108 L mol?1 s?1 at 110 °C in 50 vol % anisole were determined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5548–5558, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号