首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advantages of using the chlorinated carbon precursor chloromethane instead of the hydrocarbon precursor propane in low‐temperature (1300 °C) epitaxial growth of 4H‐SiC were investigated. Chloromethane was found to provide a much wider process window for variation of the C/Si ratio between the lower boundary corresponding to the formation of condensed silicon face and the upper boundary corresponding to polytype inclusions and polycrystalline degradation, which is critical for achieving high growth rates without epilayer quality degradation. Use of a high Cl/Si ratio provided by HCl addition in the propane‐based epitaxial growth did not eliminate the critical differences between chloro‐carbon and hydro‐carbon precursors. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The growth of CaF2 on vicinal Si (111) surfaces was studied by scanning tunneling microscopy (STM) and atomic force microscopy (AFM) for the temperature range from 300 to 750 °C. In the submonolayer range a transition from terrace to step nucleation is observed for increasing temperature. The first monolayer grows in the step-flow growth mode since second layer islands are not nucleated before completion of the wetting layer. For the subsequent growth of CaF2 on the CaF interface layer, substrate-induced steps do not act as preferential nucleation sites, but rather as growth barriers. Thus CaF2 films grow very inhomogeneously at high temperatures. At lower deposition temperatures, the film homogeneity increases due to the increased (homogeneous) nucleation rate on terraces. The lattice mismatch leads to (lateral) relaxation of thicker CaF2 film close to substrate steps. In addition, CaF2 self-decoration effects are caused by the relaxed regions close to the film steps at temperatures above 500 °C. Received: 7 August 2001 / Accepted: 23 October 2001 / Published online: 3 April 2002  相似文献   

3.
We grew vertically aligned CNTs via HFCVD using mixtures of methane and hydrogen as feedstock, and investigated the dependence of CNT growth on feedstock composition, filament temperature, and filament types. At the filament temperature of 2050 °C tungsten filaments were more efficient for CNT growth than tantalum ones, and higher CNT growth rates were observed when tungsten filaments were operated at 1900 °C. Regardless of filament temperatures and types, monotonic increase in growth rate of vertically aligned CNTs was observed as we increased the methane concentration in the feedstock. In‐situ investigation of feedstock dissociation revealed the generation of various radical species, and, moreover, a strong correlation between CNT growth rates and relative mole fractions of single‐carbon radicals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
200 µm thick 4H‐SiC epilayers have been grown by chloride‐based chemical‐vapor deposition using methyltrichlorosilane (MTS) as single precursor. The very high crystalline quality of the grown epilayer is demonstrated by high resolution X‐Ray Diffraction rocking curve with a full‐width‐half‐maximum value of only 9 arcsec. The high quality of the epilayer is further shown by low temperature photoluminescence showing strong free exciton and nitrogen bound exciton lines. The very high crystalline quality achieved for the thick epilayer grown in just two hours at 1600 °C suggests that MTS is a suitable precursor molecule for SiC bulk growth. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
ZnO:N thin films have been deposited on oxygen and zinc terminated polar surfaces of ZnO. The nitrogen incorporation in the epilayers, using NH3 as doping source, was investigated as a function of the growth temperature in the range between 380 °C and 580 °C. We used Raman spectroscopy and low temperature photoluminescence to investigate the doping properties. It turned out that the nitrogen incorporation strongly depends on both, the surface polarity of the epitaxial films and the applied growth temperatures. In our CVD process low growth temperatures and Zn‐terminated substrate surfaces clearly favour the nitrogen incorporation in the ZnO thin films. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We report on the growth properties of InAs, InP and GaAs nanowires (NWs) on different lattice mismatched substrates, in particular, on Si(111), during Au‐assisted molecular beam epitaxy (MBE). We show that the critical diameter for the epitaxial growth of dislocation‐free III–V NWs decreases as the lattice mismatch increases and equals 24 nm for InAs NWs on Si(111), 39 nm for InP NWs on Si(111), 44 nm for InAs NWs on GaAs(111)B, and 110 nm for GaAs NWs on Si(111). When the diameters exceed these critical values, the NWs are dislocated or do not grow at all. The corresponding temperature domains for NW growth extend from 320 °C to 340 °C for InAs NWs on Si(111), 330 °C to 360 °C for InP NWs on Si(111), 370 °C to 420 °C for InAs NWs on GaAs(111)B and 380 °C to 540 °C for GaAs NWs on Si(111). Experimental values for critical diameters are compared to the previous findings and are discussed within the frame of a theoretical model. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this study some aspects of the chloride‐based CVD growth process have been investigated by using both the approach to add HCl to the standard precursors and by using the single molecule precursor methyltrichlorosilane (MTS). The efficiency of the process for different precursors, the growth rate stability and the effect that the C/Si and Cl/Si ratios have on the growth are studied. It is found that MTS is the most efficient precursor and that the growth becomes carbon limited at C/Si < 1. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
High-quality thin films of ZrCyN1-y and the novel tribological material Zr0.8Al0.2CyN1-y have been grown by pulsed reactive crossed-beam laser ablation using Zr and Zr–Al ablation targets, respectively, and a pulsed gas. The gas mixture provided the carbon and nitrogen for the solid-solution films. Control of the stoichiometry (i.e. y) was determined by the relative partial pressures of the nitrogen- and carbon-containing gases. It was found that optimal control of the film chemistry was achieved by using the least thermally reactive gases. In this manner, it was possible to activate the gas species exclusively by collisions in the gas phase with the ablation-plume particles, thereby decoupling the chemistry from surface processes. The films were characterized for their chemical, crystallographic, optical, and tribological properties. All the films had very low impurity levels and a cubic rock salt crystal structure over the entire investigated temperature range between 100 and 600 °C. Exceedingly high quality epitaxial films could be grown on MgO (001) at 600 °C. Films grown on stainless steel were polycrystalline. The hardness of the films showed a maximum for both sets for stoichiometries predicted by a recent theoretical model for hardness based on band-structure calculations. In addition, all the films had an exceptionally low coefficient of friction versus steel. Received: 22 August 2001 / Accepted: 3 March 2002 / Published online: 19 July 2002  相似文献   

9.
2 (001) epitaxial thin films deposited on Si(001) with yttria-stabilized zirconia buffers have been obtained for the first time at room temperature by pulsed-laser deposition. The influence of oxygen pressure on the crystal quality of CeO2 was studied for the films deposited at 100 °C. The rocking curve full width at half maximum of the CeO2(002) peak for films deposited at room temperature and 100 °C was between 1° and 2°, for oxygen pressures below 3×10-2 mbar. The best crystal quality was obtained at around 3×10-3 mbar. Epitaxial growth at room temperature was confirmed by cross-sectional transmission electron microscopy. Scanning electron microscopy and atomic force microscopy revealed very smooth surfaces for oxygen pressure below 3×10-2 mbar, with rms roughness values around 0.3 nm over 5 μm×5 μm. Received: 25 September 1997/Accepted: 22 April 1998  相似文献   

10.
A three-step growth process is developed for depositing high-quality aluminium-nitride (AlN) epilayers on (001) sapphire by low pressure metalorganic chemical vapour deposition (LP-MOCVD). We adopt a low temperature (LT) A1N nucleation layer (NL), and two high temperature (HT) A1N layers with different V/Ⅲ ratios. Our results reveal that the optimal NL temperature is 840-880℃, and there exists a proper growth switching from low to high V/Ⅲ ratio for further reducing threading dislocations (TDs). The screw-type TD density of the optimized AIN film is just 7.86×10^6 cm^-2, about three orders lower than its edge-type one of 2×10^9 cm^-2 estimated by high-resolution x-ray diffraction (HRXRD) and cross-sectional transmission electron microscopy (TEM).  相似文献   

11.
The epitaxial growth of CeO2 thin films has been realized on (100) InP substrates using reactive r.f. magnetron sputtering. Oxide films were nucleated in the presence of molecular hydrogen (4% H2/Ar sputtering gas) in order to reduce the native oxide formation on the InP surface, which interferes with CeO2 epitaxy. A metal cerium target was used as the cation source, with water vapor serving as the oxidizing species. Epitaxial films were sputter-deposited at a substrate temperature of 550 °C in a H2O vapor pressure of approximately 10-3 Torr. Crystallinity of the oxide films was examined using θ–2θ X-ray diffraction, ω-rocking curves, and in-plane φ-scans. The best results were obtained when the initial nucleation layer was deposited with P(H2O)<10-5 Torr, followed by deposition at P(H2O)=10-3 Torr. The epitaxial growth of CeO2 on InP could prove enabling in efforts to integrate functional oxides with InP-based optoelectronic and microwave technologies. Received: 20 February 20002 / Accepted: 21 February 2002 / Published online: 19 July 2002  相似文献   

12.
AlN films have been grown on atomically flat carbon face 6H‐SiC (000 ) substrates by pulsed laser deposition and their structural properties have been investigated. In‐situ reflection high‐energy electron diffraction observations have revealed that growth of AlN at 710 °C proceeds in a Stranski–Krastanov mode, while typical layer‐by‐layer growth occurs at room temperature (RT) with atomically flat surfaces. It has been revealed that the crystalline quality of the AlN film is dramatically improved by the reduction in growth temperature down to RT and the full width at half maximum values in the X‐ray rocking curves for 0004 and 10 2 diffractions of the RT‐grown AlN film are 0.05° and 0.07°, respectively. X‐ray reciprocal space mapping has revealed that the introduction of misfit dislocations is suppressed in the case of RT growth, which is probably responsible for the improvement in crystalline quality. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The effect of temperature on growth and structure of carbon nanotubes (NTs) using chemical vapor deposition (CVD) has been investigated. Iron embedded silica was used to grow NTs in large quantity at various temperatures from 600 to 1050 °C with gas pressure fixed at 0.6 and 760 Torr, respectively. The growth and structure of the NTs are strongly affected by the temperature. At low gas pressure, the NTs are completely hollow at low temperature and bamboo-like structure at high temperature. While at high gas pressure, all the NTs are bamboo-like structure regardless of temperature. The diameter of NTs increases significantly with temperature. At low gas pressure the diameter gets bigger by mainly increasing the number of graphene layers of the wall of NTs, whereas at high gas pressure the diameter gets bigger by increasing both the number of graphene layers of the wall and the inner diameter of the NTs. This result indicates that the growth temperature is crucial in synthesizing NTs with different structures. The findings here are important for realizing controlled growth of NTs for their applications in different fields. Received: 20 November 2001 / Accepted: 21 November 2001 / Published online: 4 March 2002  相似文献   

14.
The nucleation and rapid growth of single-wall carbon nanotubes (SWNTs) were explored by pulsed-laser assisted chemical vapor deposition (PLA-CVD). A special high-power, Nd:YAG laser system with tunable pulse width (>0.5 ms) was implemented to rapidly heat (>3×104°C/s) metal catalyst-covered substrates to different growth temperatures for very brief (sub-second) and controlled time periods as measured by in situ optical pyrometry. Utilizing growth directly on transmission electron microscopy grids, exclusively SWNTs were found to grow under rapid heating conditions, with a minimum nucleation time of >0.1 s. By measuring the length of nanotubes grown by single laser pulses, extremely fast growth rates (up to 100 microns/s) were found to result from the rapid heating and cooling induced by the laser treatment. Subsequent laser pulses were found not to incrementally continue the growth of these nanotubes, but instead activate previously inactive catalyst nanoparticles to grow new nanotubes. Localized growth of nanotubes with variable density was demonstrated through this process and was applied for the reliable direct-write synthesis of SWNTs onto pre-patterned, catalyst-covered metal electrodes for the synthesis of SWNT field-effect transistors.  相似文献   

15.
We report on the epitaxial growth of yttria-stabilised zirconia (YSZ) buffer layers on X-cut LiNbO3 (LNO) single crystals by pulsed laser deposition. Despite the low chemical stability of the substrates at high temperature, high quality fully reproducible films were obtained over a relatively broad range of processing conditions. The films were (00h) out-of-plane single oriented and the in-plane edge of the YSZ unit cell was aligned with the polar axis of the LNO. However, the YSZ deposition also promoted the formation of the compound LiNb3O8. This compound is epitaxial and located at the interface. The homogeneous YSZ film presents a uniform surface, free of outgrowths and with a low roughness. These characteristics are suitable for the epitaxial growth of other oxides, as has been demonstrated with the preparation of YBa2Cu3O7/CeO2/YSZ/LNO heterostructures. The superconducting YBa2Cu3O7 films were epitaxial, with the c axis perpendicular to the surface and single in-plane orientation, and presented good transport properties (critical temperatures around 86 K and critical current densities close to 106 A/cm2 at 77 K). Received: 5 April 2001 / Accepted: 30 July 2001 / Published online: 30 October 2001  相似文献   

16.
Optical and electrical properties of diamond-like carbon (DLC) films deposited by pulsed laser ablation of graphite target at different substrate temperatures are reported. By varying the deposition temperature from 400 to 25℃, the film optical transparency and electrical resistivity increase severely. Most importantly, the transparency and resistivity properties of the DLC films can be tailored to approaching diamond by adjusting the deposition temperature, which is critical to many applications. DLC films deposited at low temperatures show excellent optical transmittance and high resistivity. Over the same temperature regime an increase of the spa bonded C content is observed using visible Raman spectroscopy, which is responsible for the enhanced transparency and resistivity properties.  相似文献   

17.
The isothermal crystallization process of polybutene-1 melt under shear flow was investigated with an optical microscope and a device (shear flow direct observation system, SF-DOS) newly developed by our group. The nucleation rate and growth rate of polybutene-1 were studied under slow shear rates (0–0.1 s?1) at high crystallization temperature (102–108°C) with the SF-DOS. The nucleation remains heterogeneous. The number of nuclei after long times increased and induction time decreased by increasing the shear rate. Anisotropic and distorted spherulites were observed under shear flow, while the spherulites in the static condition were isotropic. It was clearly observed that the spherulites were rotating under shear. The average growth rates were enhanced by increasing shear rates, which acts as the main factor affecting the overall crystallization kinetics. Finally, the crystallization kinetics were analyzed on the basis of the secondary nucleation theory of Hoffman and Lauritzen. Even under very low shear rates, the product of lateral‐surface free energy σ s and fold-surface free energy σ e was found to be reduced as shear rate increased.  相似文献   

18.
We have grown InN films on nearly lattice-matched (Mn,Zn)Fe2O4 (111) substrates at low temperatures by pulsed laser deposition (PLD) and investigated their structural properties. InN films grown at substrate temperatures above 400 °C show poor crystallinity, and their in-plane epitaxial relationship is [10-10]InN//[11-2](Mn,Zn)Fe2O4, which means that their lattice mismatch is quite large (11%). By contrast, high quality InN films with flat surfaces can be grown at growth temperatures lower than 150 °C with the ideal in-plane epitaxial relationship of [11-20]InN//[11-2](Mn,Zn)Fe2O4, which produces lattice mismatches of as low as 2.0%. X-ray reflectivity measurements have revealed that the thickness of the interfacial layer between the InN and the substrates is reduced from 14 to 8.4 nm when the growth temperature is decreased from 400 °C to room temperature. This suppression of the interface reactions by reducing the growth temperature is probably responsible for the improvement in crystalline quality. These results indicate that the use of (Mn,Zn)Fe2O4 (111) substrates at low growth temperatures allows us to achieve nearly lattice matched epitaxial growth of InN.  相似文献   

19.
The polycrystalline ruthenium films are grown on TaN substrates by atomic layer deposition (ALD) using bis(cyclopentadienyl) ruthenium [RuCp2] and oxygen as ruthenium precursor and reactant respectively at a deposition temperature of 330℃. The low-energy Ar ion bombardment and Ru pre-deposition are performed to the underlying TaN substrates before ALD process in order to improve the Ru nucleation. X-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy are carried out to characterize the properties of ALD Ru films. The results show that the nucleation density of Ru films with Ar^+ bombardment to the underlying TaN substrates is much higher than that of the ones without any pretreatment. The possible reasons are discussed.  相似文献   

20.
Precursor concentration dependences of growth rate, doping concentration and surface morphology have been investigated in the epitaxial growth of 4H-SiC(0001) epilayers with horizontal hot-wall CVD system using various precursor concentrations under constant C/Si ratio. Form the experimental data it is found that silicon cluster which is formed through gas phase nucleation plays an important role in controlling the doping concentration and epitaxial growth rate of the silicon carbide. It was observed that t...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号