首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
pH‐ and temperature‐responsive poly(N‐isopropylacrylamide‐block?4‐vinylbenzoic acid) (poly(NIPAAm‐b‐VBA)) diblock copolymer brushes on silicon wafers have been successfully prepared by combining click reaction, single‐electron transfer‐living radical polymerization (SET‐LRP), and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. Azide‐terminated poly(NIPAAm) brushes were obtained by SET‐LRP followed by reaction with sodium azide. A click reaction was utilized to exchange the azide end group of a poly(NIPAAm) brushes to form a surface‐immobilized macro‐RAFT agent, which was successfully chain extended via RAFT polymerization to produce poly(NIPAAm‐b‐VBA) brushes. The addition of sacrificial initiator and/or chain‐transfer agent permitted the formation of well‐defined diblock copolymer brushes and free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. Ellipsometry, contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy were used to characterize the immobilization of initiator on the silicon wafer, poly(NIPAAm) brush formation via SET‐LRP, click reaction, and poly(NIPAAm‐b‐VBA) brush formation via RAFT polymerization. The poly(NIPAAm‐b‐VBA) brushes demonstrate stimuli‐responsive behavior with respect to pH and temperature. The swollen brush thickness of poly(NIPAAm‐b‐VBA) brush increases with increasing pH, and decreases with increasing temperature. These results can provide guidance for the design of smart materials based on copolymer brushes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2677–2685  相似文献   

2.
The first and second generations of dendronized polyprolines P3G1 , P3G2, and P4G1 are prepared via the “grafting to” route, and their thermoresponsive properties and helical conformations investigated. High molar masses of polyproline main chains carrying azido groups are achieved first by polycondensation of peptide precursors through activated ester strategy. Oligoethylene glycol dendrons cored with alkyne are then attached onto the main chains through click reaction. These polymers are found to be thermoresponsive. Circular dichroism spectroscopy investigation indicates, in contrast to P3G2 and P4G1 which adopt the expected PPII conformation in aqueous conditions, P3G1 prefers to adopt PPI helical conformation, and this conformation is stable within the measured time period and temperature range.

  相似文献   


3.
We present herein a mild and rapid method to create diblock copolymer brushes on a silicon surface via photoinitiated “thiol‐ene” click reaction. The silicon surface was modified with 3‐mercaptopropyltrimethoxysilane (MPTMS) self‐assembled monolayer. Then, a mixture of divinyl‐terminated polydimethylsiloxane (PDMS) and photoinitiator was spin‐coated on the MPTMS surface and exposed to UV‐light. Thereafter, a mixture of thiol‐terminated polyethylene glycol (PEG) and photoinitiator were spin‐coated on the vinyl‐terminated PDMS‐treated surface, and the sequent photopolymerization was carried out under UV‐irradiation. The MPTMS, PDMS, and PEG layers were carefully identified by X‐ray photoelectron spectroscopy, atomic force microscopy, ellipsometry, and water contact angle measurements. The thickness of the polydimethylsiloxane‐block‐poly(ethylene glycol) (PDMS‐b‐PEG) diblock copolymer brush could be controlled by the irradiation time. The responsive behavior of diblock copolymer brushes treated in different solvents was also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Surface wrinkles are interesting since they form spontaneously into well‐defined patterns. The mechanism of formation is well‐studied and is associated with the development of a critical compressive stress that induces the elastic instability. In this work, we demonstrate surface wrinkles that dynamically change in response to a stimulus can improve interfacial adhesion with a hydrogel surface through the dynamic evolution of the wrinkle morphology. We observe that this control is related to the local pinning of the crack separation pathway facilitated by the surface wrinkles during debonding, which is dependent on the contact time with the hydrogel. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

5.
The synthesis and characterization of four families of anionic carbosilane dendrimers bearing carboxylate, phosphonate, naphthylsulfonate, and sulfate terminal groups prepared by cycloaddition of azide–alkyne catalyzed by copper (CuAAC) are presented here. For the preparation of these anionic carbosilane dendrimers, two strategies starting from azide‐terminated carbosilane dendrimers were followed: (i) click coupling of neutral alkynes followed by derivatization into anionic moieties or (ii) click coupling of anionic alkynes. Both strategies require different reaction conditions in order to accommodate the different substrate polarities. These anionic dendrimers, in general, do not present cell toxicity in vitro until concentration up to 20 µM. Therefore, they can be used in inhibition experiments in concentrations below this limit. We have observed that dendrimers bearing phosphonate groups possess poor anti‐HIV capabilities in vitro in PBMCs, while carboxylate dendrimers can reduce HIV infection levels moderately. On the other hand, sulfate and naphthylsulfonate dendrimers are powerful anti‐HIV agents and their antiviral activity is generation and concentration dependent. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1099–1112  相似文献   

6.
π‐Conjugated polymers (Poly1–Poly3) containing a 2,2′‐bipyridine (bpy) unit were subjected to coordination to nickel and copper dithiolate for the purpose of manipulating the photophysical properties. The absorption maximum peak of Poly1 [maximum wavelength (λmax) = 446 nm] redshifted by 36 nm upon the coordination of bpy to NiCl2, which produced Poly1–NiCl2. A further bathochromic shift was observed in the spectrum of Poly1–mntNi [mntNi = (maleonitrile dithiolate)nickel; λmax = 499 nm] bearing the dithiolate ligand, which stemmed from the extension of the conjugated system over the nickel dithiolate moiety through the bpy unit. An increase in the [Ni]/[bpy] ratio in Poly1–mntNi rendered the original maximum peak at 446 nm smaller and the lower energy charge‐transfer peak at 499 nm larger; the isosbestic points remained at 380 and 475 nm. The green fluorescence (λmax = 504 nm) emitted from Poly1 markedly diminished upon the coordination of nickel dithiolate because of the effective energy transfer. The absorption maximum peak of Poly1–mntNi in chloroform at 499 nm blueshifted to 471 nm when the volume ratio of the chloroform/N,N‐dimethylformamide solvent reached 10:90. The coordination of nickel dithiolate to Poly2 and Poly3 also brought about redshifts of the absorption maximum peaks of as much as 55 and 61 nm, respectively. The absorption maximum peak of Poly1–(phenyldithiolate)nickel(pdtNi) (λmax = 474 nm) redshifted by 28 nm in comparison with that of Poly1, whereas the magnitude of the shift of Poly1–bis(thiophenoxide)nickel(btpNi) bearing two thiophenoxide ligands was 20 nm. Poly1–mntCu with a tetrahedral copper center was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2631–2639, 2004  相似文献   

7.
Thermoresponsive brush copolymers with poly(propylene oxide‐ran‐ethylene oxide) side chains were synthesized via a “grafting from” technique. Poly(p‐hydroxystyrene) was used as the backbone, and the brush copolymers were prepared by random copolymerization of mixtures of oxyalkylene monomers, using metal‐free anionic ring‐opening polymerization, with the phosphazene base (t‐BuP4) being the polymerization promoter. By controlling the monomer feed ratios in the graft copolymerization, two samples with the same side‐chain length and different compositions were prepared, both of which possessed high molecular weights and low molecular weight distributions. The results from light scattering and fluorescence spectroscopy indicated that the brush copolymers in their dilute aqueous solutions were near completely solvated at low temperature and underwent slight intramolecular chain contraction/association and much more profound intermolecular aggregation at different stages of the step‐by‐step heating process. Above 50 °C, very turbid solutions, followed by macrophase separation, were observed for both of the samples, which implied that it was difficult for the brush copolymers to form stable nanoscopic aggregates at high temperature. All these observations were attributed, at least partly, to the distribution of the oxyalkylene monomers along the side chains and the overall brush‐like molecular architecture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2320–2328, 2010  相似文献   

8.
Nitroxide‐mediated radical polymerization has been used for the preparation of pentafluorostyrene (PFS) homopolymers and random copolymers of PFS and oligo(ethyleneglycol) methacrylate (OEGMA8.5). The poly(pentafluorostyrene) homopolymers were reacted with thiophenol at different ratios at room temperature in the presence of triethylamine. The “clicked” polymers were characterized by 1H and 19F NMR spectroscopy and size exclusion chromatography. Moreover, the copolymerization kinetics of the PFS and OEGMA8.5 copolymers was followed, and the phase transition behavior of random copolymers with different compositions was discussed. Furthermore, copolymers of PFS and 2‐(dimethylamino) ethyl methacrylate (DMAEMA) were prepared at various mole ratios, and the copolymer with a 10:90 ratio, respectively, was soluble in water at room temperature. Turbidimetry measurements were performed for PFS and OEGMA8.5 or DMAEMA copolymers to determine their cloud points. Finally, the PFS and OEGMA8.5 copolymer with a mole ratio of 60:40 was reacted further with thiophenol to increase the hydrophobic part in the copolymer. The cloud points of the obtained copolymers could be tuned from 87 to 33 °C by using not only the controlled radical polymerization but also the “click” reaction in a controlled fashion. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1278–1286, 2010  相似文献   

9.
Well‐defined macromolecular brushes with poly(N‐isopropyl acrylamide) (PNIPAM) side chains on random copolymer backbones were synthesized by “grafting from” approach based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization. To prepare macromolecular brushes, two linear random copolymers of 2‐(trimethylsilyloxy)ethyl methacrylate (HEMA‐TMS) and methyl methacrylate (MMA) (poly(MMA‐co‐HEMA‐TMS)) were synthesized by atom transfer radical polymerization and were subsequently derivated to azide‐containing polymers. Novel alkyne‐terminated RAFT chain transfer agent (CTA) was grafted to polymer backbones by copper‐catalyzed 1,3‐dipolar cycloaddition (azide‐alkyne click chemistry), and macro‐RAFT CTAs were obtained. PNIPAM side chains were prepared by RAFT polymerization. The macromolecular brushes have well‐defined structures, controlled molecular weights, and molecular weight distributions (Mw/Mn ≦ 1.23). The RAFT polymerization of NIPAM exhibited pseudo‐first‐order kinetics and a linear molecular weight dependence on monomer conversion, and no detectable termination was observed in the polymerization. The macromolecular brushes can self‐assemble into micelles in aqueous solution. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 443–453, 2010  相似文献   

10.
Novel hexa‐armed and pyrene (Pyr) end‐capped phosphazene dendrimer [N3P3‐(Pyr)6] and star polymer with poly(ε‐caprolactone) (PCL) arms [N3P3‐(PCL‐Pyr)6] were prepared via two series of reactions. In these series, core‐first approach was used starting from a hexa‐hydroxy functional phosphazene derivative (N3P3‐(OH)6). It was used as an initiator in the ring‐opening polymerization of ε‐caprolactone to prepare a hexa‐armed PCL star polymer (N3P3‐(PCL‐OH)6). Hydroxyl functionalities of N3P3‐(OH)6 and N3P3‐(PCL‐OH)6 were then successfully converted into bromide and azide, in turn. Further end‐group modifications of azide functional dendrimer precursor (N3P3‐(N3)6) and star polymer (N3P3‐(PCL‐N3)6) were achieved quantitatively via the Cu(I) catalyzed click reaction between azide functional groups and 1‐ethynyl pyrene in the final step. Moreover, the pyrene end‐capped phosphazene dendrimer and star polymer were used in noncovalent functionalization of multiwalled carbon nanotubes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A new controlled release polymer micelle was designed and synthesized based on the concept of the “AND” logic with two orthogonal molecular triggers, namely pH and reduction, for intracellular drug delivery. Specifically, a hydrazine functionalized PEO‐b‐PMAA block copolymer was used to attach adriamycin (ADR) through the formation of hydrazone, then the as‐prepared ADR‐conjugated block copolymer micelles could be crosslinked by dithiodiethanoic acid. ADR was found to release most efficiently under both the low pH and the reductive conditions. This smart device is therefore equipped with two triggers with the “AND” logic for the releasing action, which is suitable for more complicated physiological conditions because the “ON” state is only realized under the simultaneous presence of the dual signal stimuli.

  相似文献   


12.
Noncovalent functionalization of single‐walled carbon nanotubes (SWNTs) with conjugated polymers enhances SWNT processability and allows for selective dispersion of various SWNT species. Selective dispersions can be obtained by tuning the nature of the polymer, which can involve using various polymer backbones or side‐chains. However, a clear understanding of selectivity determinants is elusive, as the degree of polymerization (DP) has a large effect on SWNT selectivity. Additionally, preparing libraries of conjugated polymers with varying functionality while keeping DP consistent is difficult. Here, we report the utilization of a strained cyclooctyne‐containing conjugated polymer that serves as a versatile scaffold, enabling systematic preparation of a small library of conjugated polymers with different side‐chain functionality, while maintaining a consistent DP. The resulting polymers were used as dispersants for SWNTs, forming supramolecular polymer‐SWNT complexes that were characterized by UV‐Vis‐NIR absorption and Raman spectroscopy. In the series of polymers, we were able to probe the effect of small changes within the side chains, such as the incorporation of a carbonyl group or an aromatic unit, on the quality of the polymer‐SWNT dispersion. The results of these studies provide new insight into the factors that dictate the ability of a polymer to form strong interactions with SWNTs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2053–2058  相似文献   

13.
In this study, we report the synthesis of π‐conjugated network polymers including unique fluorescent units via palladium‐catalyzed direct (C? H) arylation polycondensation of 1,2,4,5‐tetrafluorobenzene with tetrabromoarenes. The obtained polymers, including tetraphenylethene (TPE) or pyrene (PYR) units, had microporous structures with the specific Brunauer–Emmett–Teller (BET) surface areas at 508 and 824 m2 g?1, respectively. These polymers possessed narrow pore distributions (<15 nm). These analyses supported that π‐conjugated microporous polymers (CMPs) were synthesized by the direct arylation. Similar to the result of BET surface areas, carbon capture capacity of CMP based on PYR unit was higher than that of CMP based on TPE unit. Because the nitrogen capture capacity of these CMPs was low (≈ 0), selectivity of carbon dioxide adsorption was very high. TPE is a typical aggregation‐induced emission unit but PYR is an aggregation‐caused quenching (ACQ) molecule. The incorporation of TPE unit into the microporous polymer gave green‐colored fluorescence (Φ = 0.12). The polymer including PYR units also showed the green‐colored fluorescence (Φ = 0.05) even though the ACQ property. These synthesized CMPs exhibited characteristic solvatofluorochromism. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3862–3867  相似文献   

14.
This highlight summarizes recent attempts and advances of macromolecular sciences to abstract the biological concept of regulation and import it into synthetic polymer systems. The differences of “responsive switching” exploited in smart polymers and “regulation” present in the biological world of proteins are evident. Therefore, the biomimetic regulation might advance the possibilities of polymer science beyond these of established “smart polymers” and makes precise regulation of functions through signaling events, signal transduction and even complex regulative circuits possible. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1–14, 2010  相似文献   

15.
Some linear π‐conjugated polymers containing 2,4,6‐tris(thiophen‐2‐yl)‐1,3,5‐triazine unit were synthesized via Sonogashira or Suzuki reaction for the first time and characterized by IR, NMR, and GPC. Because of the introduction of 2,4,6‐tris(thiophen‐2‐yl)‐1,3,5‐triazine unit into π‐conjugated system, all polymers exhibited good thermal stability with high decomposition temperature. Their optical and electrochemical properties were investigated. Based on the 2,4,6‐tris(thiophen‐2‐yl)‐1,3,5‐triazine unit linked with different aromatic rings, the polymers showed the tunable fluorescence from blue to blue‐green emission with satisfied quantum yield. Cyclic voltammetry measurement indicated that the LUMO and HOMO levels of the polymers could be adjustable through the main‐chain structural modification. All polymers had low LUMO level (?2.86 to ?3.06 eV) due to the high‐electron affinity of triazine unit. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 702–712, 2008  相似文献   

16.
Recently, a new class of copolymers, so‐called protein‐like copolymers has been predicted theoretically by computer simulation. In these copolymers, the conformation of the copolymer determines the exposure of certain comonomer units to the outer solution. Depending on the conformation, copolymer molecules with essentially the same comonomer composition could have pronouncedly different properties. The authors demonstrated experimentally such behavior in case of poly[(N‐vinylcaprolactam)‐co‐(N‐vinylimidazole)] (Dokl. Chem. 2001 , 375, 637). One more group of copolymers with protein‐like behavior is copolymers of N‐isopropylacrylamide with N‐vinylimidazole. Poly[(N‐isopropylacrylamide)‐co‐(N‐vinylimidazole)] was synthesized by radical polymerization and separated into two fractions using immobilized metal affinity chromatography on Cu2+‐loaded iminodiacetic acid sepharose CL 6B (Cu2+‐IDA‐sepharose). The unbound fraction which passed through the column and bound fraction eluted with Ethylenediaminetetraacetic acid, disodium salt (EDTA) solution differed significantly in molecular weight, 1.4×106 and 1.35×105, respectively but were very close in comonomer composition, 7.8 and 9.1 mol‐% of imidazole, respectively. The composition of bound fraction was confirmed by titration of imidazole groups. Despite close chemical composition, the bound and unbound fraction behaved differently with respect to temperature‐induced phase separation at different pH values, the dependence of hydrodynamic diameter on pH and concentration of Cu2+‐ions, and the coprecipitation of soybean trypsin inhibitor with the copolymer in the presence of Cu2+‐ions. The differences in the behavior of copolymer fractions are rationalized assuming that the bound fraction presents a protein‐like copolymer.  相似文献   

17.
The syntheses of well‐defined 7‐arm and 21‐arm poly(N‐isopropylacrylamide) (PNIPAM) star polymers possessing β‐cyclodextrin (β‐CD) cores were achieved via the combination of atom transfer radical polymerization (ATRP) and click reactions. Heptakis(6‐deoxy‐6‐azido)‐β‐cyclodextrin and heptakis[2,3,6‐tri‐O‐(2‐azidopropionyl)]‐β‐cyclodextrin, β‐CD‐(N3)7 and β‐CD‐(N3)21, precursors were prepared and thoroughly characterized by nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. A series of alkynyl terminally functionalized PNIPAM (alkyne‐PNIPAM) linear precursors with varying degrees of polymerization (DP) were synthesized via atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide using propargyl 2‐chloropropionate as the initiator. The subsequent click reactions of alkyne‐PNIPAM with β‐CD‐(N3)7 and β‐CD‐(N3)21 led to the facile preparation of well‐defined 7‐arm and 21‐arm star polymers, namely β‐CD‐(PNIPAM)7 and β‐CD‐(PNIPAM)21. The thermal phase transition behavior of 7‐arm and 21‐arm star polymers with varying molecular weights were examined by temperature‐dependent turbidity and micro‐differential scanning calorimetry, and the results were compared to those of linear PNIPAM precursors. The anchoring of PNIPAM chain terminal to β‐CD cores and high local chain density for star polymers contributed to their considerably lower critical phase separation temperatures (Tc) and enthalpy changes during phase transition as compared with that of linear precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 404–419, 2009  相似文献   

18.
Arylenevinylene‐based π‐conjugated polymers containing imidazolium cationic units in the main chain and their model compounds were synthesized and characterized in terms of optical and electrochemical properties. 9,9‐Bisoctylfluorene, 2,5‐bisdodecyloxybenzene, and 3‐dodecylthiophene were introduced as arylene units with different donor characteristics to evaluate the effect on the highest occupied molecular orbital‐lowest unoccupied molecular orbital (HOMO‐LUMO) gap energy. The UV–vis and fluorescence spectra of cationic polymers and model compounds with iodide counter anion exhibited a significant blue shift with respect to the parent neutral molecules. X‐ray single crystal analysis for model compounds revealed that the effective π‐conjugation length of cationic model compounds decreased compared to the neutral model compounds by means of twisted conformation directed by CH‐π interactions between N‐methyl groups of imidazolium and neighboring aryl units. The cyclic voltammetry measurement suggested the negative shift of LUMO levels by the conversion of imidazole to imidazolium, indicating the electron‐accepting characteristics of cationic imidazolium unit. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The detection of 2,4‐dinitrotoluene (DNT) by fluorescence quenching of a new class of polyimines consisting in π‐conjugated segments regularly alternated with chiral C2 symmetry units has been studied for solutions and thin films. Their photophysical properties and their sensitivity towards DNT detection has been compared to those of a small model molecule incorporating the same π‐conjugated segment. In solution, all the compounds exhibit the same photo‐physical properties and sensitivity towards DNT detection. In contrast, for thin films, better performances are observed in static conditions for this new class of polyimines compared to the small model molecule. It seems that C2 symmetry units prevent from the stacking of the π‐conjugated segments and provide in addition to high fluorescence signal an improved diffusion of the analyte inside the films. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4141–4149, 2009  相似文献   

20.
A new water soluble fluorene‐based polyelectrolyte containing on‐chain porphyrin units has been synthesized via Suzuki coupling, for use in optoelectronic devices. The material consist of a random copolymer of poly{1,4‐phenylene‐[9,9‐bis(4‐phenoxy butylsulfonate)]fluorene‐2,7‐diyl} (PBS‐PFP) and a 5,15‐diphenylporphyrin (DPP). The energy transfer process between the PBS‐PFP units and the porphyrin has been investigated through steady state and time‐resolved measurements. The copolymer PBS‐PFP‐DPP displays two different emissions one located in the blue region of the spectra, corresponding to the fluorene part and another in the red due to fluorescent DPP units either formed directly or by exciton transfer. However, relatively inefficient energy transfer from the PFP to the on‐chain porphyrin units was observed. We compare this with a system involving an anionic blue light‐emitting donor PBS‐PFP and a anionic red light‐emitting energy acceptor meso‐tetrakisphenylporphyrinsulfonate (TPPS), self‐assembled by electrostatic attraction induced by Ca2+. Based on previous studies related to chain aggregation of the anionic copolymer PBS‐PFP, two different solvent media were chosen to further explore the possibilities of the self‐assembled system: dioxane–water and aqueous nonionic surfactant n‐dodecylpentaoxyethylene glycol ether (C12E5). In contrast, with the on‐chain PBS‐PFP‐DPP system the strong overlap of the 0‐0 emission peak of the PBS‐PFP and the Soret absorption band of the TPPS results in an efficient Förster transfer. This is strongly dependent on the solvent medium used. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号