共查询到20条相似文献,搜索用时 6 毫秒
1.
The kinetics and mechanism of the reaction of OH with CH3Cl have been theoretically studied. The potential energy surface for each possible pathway has been investigated by the G2MP2 method. The rate constants for channels leading to several products have been calculated by multichannel‐Rice‐Ramsperger‐Kassel‐Marcus (RRKM) theory over a temperature range 200–2000 K. The results show the major channel is hydrogen abstraction mechanism. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012 相似文献
2.
The CH2Cl + CH3 (1) and CHCl2 + CH3 (2) cross-radical reactions were studied by laser photolysis/photoionization mass spectroscopy. Overall rate constants were obtained in direct real-time experiments in the temperature region 301-800 K and bath gas (helium) density (6-12) x 10(16) atom cm(-3). The observed rate constant of reaction 1 can be represented by an Arrhenius expression k1 = 3.93 x 10(-11) exp(91 K/T) cm3 molecule(-1) s(-1) (+/-25%) or as an average temperature-independent value of k1= (4.8 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1). The rate constant of reaction 2 can be expressed as k2= 1.66 x 10(-11) exp(359 K/T) cm3 molecule(-1) s(-1) (+/-25%). C2H4 and C2H3Cl were detected as the primary products of reactions 1 and 2, respectively. The experimental values of the rate constant are in reasonable agreement with the prediction based on the "geometric mean rule." A separate experimental attempt to determine the rate constants of the high-temperature CH2Cl + O2 (10) and CHCl2 + O2 (11) reaction resulted in an upper limit of 1.2 x 10(-16) cm(3) molecule(-1) s(-1) for k10 and k11 at 800 K. 相似文献
3.
4.
Charles E. Hudson David J. McAdoo 《Journal of the American Society for Mass Spectrometry》1998,9(2):130-137
Ab initio calculations establish that CH3O+=CHCH3 (1) rearranges in gas phase isolation to CH2=O+C2H5 (2) directly rather than through CH3OCH2CH 2 + (3). The reaction is predicted to be antarafacial, in accord with the Woodward-Hoffmann (W-H) predictions. We predict an activation energy of 212.0 kJ/mol for this process at the QCISD(T)/6-311G**//MP2/6-311G** level. We also reinvestigated the degenerate rearrangement of CH3O=CH 2 + by a 1,3-sigmatropic shift. The W-H model is not a good one for the transition state (TS) for the latter reaction because the π bonding has been completely broken off. That TS is stabilized by three-center bonding between the carbons and the hydrogen being transferred. We also examined the questions of the importance of polarization functions on hydrogen and a set of outer valence functions on all the atoms in describing these hydrogen transfer TSs, and whether it is necessary to include these functions in the TS optimization runs. For the rearrangements we studied, polarization functions on hydrogen are crucial only for 1,2 hydrogen shifts. The 6-31G* basis set is adequate and good for the optimization of TSs of other ring sizes. For the 1,3 and 1,4 shifts we examined, a combination of both outer valence functions and polarization functions on hydrogen causes reductions in the computed activation energies ranging from 5.9 kJ/mol for the 1,4 shift at the RHF level to 15.6 kJ/mol for the 1,3 shift at the MP2 level. 相似文献
5.
A theoretical study is reported of the Cl+CH3OH-->CH2OH+HCl reaction based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using a DMC trial function constructed as a product of Hartree-Fock and correlation functions, we have computed the barrier height, heat of reaction, atomization energies, and heats of formation of reagents and products. The DMC heat of reaction, atomization energies, and heats of formation are found to agree with experiment to within the error bounds of computation and experiment. M?ller-Plesset second order perturbation theory (MP2) and density functional theory, the latter in the B3LYP generalized gradient approximation, are found to overestimate the experimental heat of reaction. Intrinsic reaction coordinate calculations at the MP2 level of theory demonstrate that the reaction is predominantly direct, i.e., proceeds without formation of intermediates, which is consistent with a recent molecular beam experiment. The reaction barrier as determined from MP2 calculations is found to be 2.24 kcal/mol and by DMC it is computed to be 2.39(49) kcal/mol. 相似文献
6.
采用RRKM理论和疏松过渡态模型计算了N(4S)+CH2X(X=F,Cl)反应的微正则速率常数和通道分支比.计算结果表明,在较低的内能下(E=280.29 kJ/mol), N(4S)+CH2F的主要产物为NCHF+H,占总产物的59.2%,次要产物为H2CN+F,占37.4%.而N(4S)+CH2Cl反应在E=267.78 kJ/mol时,主要产物是H2CN+Cl,占90.3%, NCHCl+H只占9.0%.在内能较高的时候(取E=500.00 kJ/mol), N(4S)+CH2F的主要通道并未变化,而N(4S)+CH2Cl的主要通道变为NCHCl+H,比例为51.5%, H2CN+Cl的比例降到40.4%. 相似文献
7.
Molecular chlorine, methanol, and helium are co-expanded into a vacuum chamber using a custom designed "late-mixing" nozzle. The title reaction is initiated by photolysis of Cl2 at 355 nm, which generates monoenergetic Cl atoms that react with CH3OH at a collision energy of 1960 +/- 170 cm(-1) (0.24 +/- 0.02 eV). Rovibrational state distributions of the nascent HCl products are obtained via 2 + 1 resonance enhanced multiphoton ionization, center-of-mass scattering distributions are measured by the core-extraction technique, and the average internal energy of the CH3OH co-products is deduced by measuring the spatial anisotropy of the HCl products. The majority (84 +/- 7%) of the HCl reaction products are formed in HCl(v = 0) with an average rotational energy of [Erot] = 390 +/- 70 cm(-1). The remaining 16 +/- 7% are formed in HCl(v = 1) and have an average rotational energy of [Erot] = 190 +/- 30 cm(-1). The HCl(v = 1) products are primarily forward scattered, and they are formed in coincidence with CH2OH products that have little internal energy. In contrast, the HCl(v = 0) products are formed in coincidence with CH2OH products that have significant internal energy. These results indicate that two or more different mechanisms are responsible for the dynamics in the Cl + CH3OH reaction. We suggest that (1) the HCl(v = 1) products are formed primarily from collisions at high impact parameter via a stripping mechanism in which the CH2OH co-products act as spectators, and (2) the HCl(v = 0) products are formed from collisions over a wide range of impact parameters, resulting in both a stripping mechanism and a rebound mechanism in which the CH2OH co-products are active participants. In all cases, the reaction of fast Cl atoms with CH3OH is with the hydrogen atoms on the methyl group, not the hydrogen on the hydroxyl group. 相似文献
8.
Garzón A Cuevas CA Ceacero AA Notario A Albaladejo J Fernández-Gómez M 《The Journal of chemical physics》2006,125(10):104305
The reactions of Cl with a series of linear alcohols: methanol (k1), ethanol (k2), 1-propanol (k3), 1-butanol (k4), and 1-pentanol (k5) were investigated as a function of temperature in the range of 264-382 K by laser photolysis-resonance fluorescence. The obtained kinetic data were used to derive the following Arrhenius expressions: k1=(3.55+/-0.22)x10(-10) exp[-(559+/-40)T], k2=(5.25+/-0.52)x10(-11) exp[(190+/-68)T], k3=(2.63+/-0.21)x10(-11) exp[(525+/-51)T], k4=(3.12+/-0.31)x10(-11) exp[(548+/-65)T], and k5=(3.97+/-0.48)x10(-11) exp[(533+/-77)T] (in units of cm(3) molecule(-1) s(-1)). To our knowledge, these are the first absolute kinetic data reported for 1-butanol and 1-pentanol and also the first kinetic study as a function of temperature for these two compounds. Results, mechanism, and tropospheric implications are discussed and compared with the reported reactivity with OH radicals. Moreover, a theoretical insight into the mechanisms of these reactions has also been pursued through ab initio M?ller-Plesset second-order perturbation treatment calculations with 6-311G** basis sets. Optimized geometries and vibrational frequencies have been obtained for transition states and molecular complexes appearing along the different reaction pathways. Furthermore, molecular energies have been calculated at quadratic configuration interaction with single, double, and triple excitations level in order to get an estimation of the activation energies. 相似文献
9.
Eskola AJ Timonen RS Marshall P Chesnokov EN Krasnoperov LN 《The journal of physical chemistry. A》2008,112(32):7391-7401
The kinetics of the CH3 + Cl2 (k2a) and CD3 + Cl2 (k2b) reactions were studied over the temperature range 188-500 K using laser photolysis-photoionization mass spectrometry. The rate constants of these reactions are independent of the bath gas pressure within the experimental range, 0.6-5.1 Torr (He). The rate constants were fitted by the modified Arrhenius expression, k2a = 1.7 x 10(-13)(T/300 K)(2.52)exp(5520 J mol(-1)/RT) and k2b = 2.9 x 10(-13)(T/300 K)(1.84)exp(4770 J mol(-1)/RT) cm(3) molecule(-1) s(-1). The results for reaction 2a are in good agreement with the previous determinations performed at and above ambient temperature. Rate constants of the CH3 + Cl2 and CD3 + Cl2 reactions obtained in this work exhibit minima at about 270-300 K. The rate constants have positive temperature dependences above the minima, and negative below. Deuterium substitution increases the rate constant, in particular at low temperatures, where the effect reaches ca. 45% at 188 K. These observations are quantitatively rationalized in terms of stationary points on a potential energy surface based on QCISD/6-311G(d,p) geometries and frequencies, combined with CCSD(T) energies extrapolated to the complete basis set limit. 1D tunneling as well as the possibility of the negative energies of the transition state are incorporated into a transition state theory analysis, an approach which also accounts for prior experiments on the CH3 + HCl system and its various deuterated isotopic substitutions [Eskola, A. J.; Seetula, J. A.; Timonen, R. S. Chem. Phys. 2006, 331, 26]. 相似文献
10.
David M. Golden 《国际化学动力学杂志》2008,40(6):310-319
11.
Řeřicha R. Stokr J. Jakoubková M. Svoboda P. Chvalovský V. 《Colloid and polymer science》1976,254(10):932-932
Ohne Zusammenfassung 相似文献
12.
Nonadiabatic dynamics in the title reaction have been investigated by 2+1 REMPI detection of the Cl(2P(3/2)) and Cl*(2P(1/2)) products. Reaction was initiated by photodissociation of CH(3)I at 266 nm within a single expansion of a dilute mixture of CH(3)I and HCl in argon, giving a mean collision energy of 7800 cm(-1) in the center-of-mass frame. Significant production of Cl* was observed, with careful checks made to ensure that no additional photochemical or inelastic scattering sources of Cl* perturbed the measurements. The fraction of the total yield of Cl(2P(J)) atoms formed in the J=1/2 level at this collision energy was 0.150+/-0.024, and must arise from nonadiabatic dynamics because the ground potential energy surface correlates to CH(4)+Cl(2P(3/2)) products. 相似文献
13.
Nakayama T Takahashi K Matsumi Y Toft A Andersen MP Nielsen OJ Waterland RL Buck RC Hurley MD Wallington TJ 《The journal of physical chemistry. A》2007,111(5):909-915
FTIR-smog chamber techniques were used to study the products of the Cl atom and OH radical initiated oxidation of CF3CH=CH2 in 700 Torr of N2/O2, diluent at 296 K. The Cl atom initiated oxidation of CF3CH=CH2 in 700 Torr of air in the absence of NOx gives CF3C(O)CH2Cl and CF3CHO in yields of 70+/-5% and 6.2+/-0.5%, respectively. Reaction with Cl atoms proceeds via addition to the >C=C< double bond (74+/-4% to the terminal and 26+/-4% to the central carbon atom) and leads to the formation of CF3CH(O)CH2Cl and CF3CHClCH2O radicals. Reaction with O2 and decomposition via C-C bond scission are competing loss mechanisms for CF3CH(O)CH2Cl radicals, kO2/kdiss=(3.8+/-1.8)x10(-18) cm3 molecule-1. The atmospheric fate of CF3CHClCH2O radicals is reaction with O2 to give CF3CHClCHO. The OH radical initiated oxidation of CxF2x+1CH=CH2 (x=1 and 4) in 700 Torr of air in the presence of NOx gives CxF2x+1CHO in a yield of 88+/-9%. Reaction with OH radicals proceeds via addition to the >C=C< double bond leading to the formation of CxF2x+1C(O)HCH2OH and CxF2x+1CHOHCH2O radicals. Decomposition via C-C bond scission is the sole fate of CxF2x+1CH(O)CH2OH and CxF2x+1CH(OH)CH2O radicals. As part of this work a rate constant of k(Cl+CF3C(O)CH2Cl)=(5.63+/-0.66)x10(-14) cm3 molecule-1 s-1 was determined. The results are discussed with respect to previous literature data and the possibility that the atmospheric oxidation of CxF2x+1CH=CH2 contributes to the observed burden of perfluorocarboxylic acids, CxF2x+1COOH, in remote locations. 相似文献
14.
Experimental data for the title reaction were modeled using master equation (ME)/RRKM methods based on the Multiwell suite of programs. The starting point for the exercise was the empirical fitting provided by the NASA (Sander, S. P.; Finlayson-Pitts, B. J.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Orkin, V. L.; Ravishankara, A. R. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Jet Propulsion Laboratory: Pasadena, California, 2006)1 and IUPAC (Atkinson, R.; Baulch, D. L.; Cox, R. A.; R. F. Hampson, J.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data 2000, 29, 167)2 data evaluation panels, which represents the data in the experimental pressure ranges rather well. Despite the availability of quite reliable parameters for these calculations (molecular vibrational frequencies (Parthiban, S.; Lee, T. J. J. Chem. Phys. 2000, 113, 145)3 and a value (Orlando, J. J.; Tyndall, G. S. J. Phys. Chem. 1996, 100, 19398)4 of the bond dissociation energy, D298(BrO-NO2) = 118 kJ mol-1, corresponding to DeltaH0o = 114.3 kJ mol-1 at 0 K) and the use of RRKM/ME methods, fitting calculations to the reported data or the empirical equations was anything but straightforward. Using these molecular parameters resulted in a discrepancy between the calculations and the database of rate constants of a factor of ca. 4 at, or close to, the low-pressure limit. Agreement between calculation and experiment could be achieved in two ways, either by increasing DeltaH0o to an unrealistically high value (149.3 kJ mol-1) or by increasing DeltaEd, the average energy transferred in a downward collision, to an unusually large value (>5000 cm-1). The discrepancy could also be reduced by making all overall rotations fully active. The system was relatively insensitive to changing the moments of inertia in the transition state to increase the centrifugal effect. The possibility of involvement of BrOONO was tested and cannot account for the difficulties of fitting the data. 相似文献
15.
Richard D. Bowen Alex. W. Colburn Peter J. Derrick 《Journal of mass spectrometry : JMS》1990,25(10):509-516
The reactions of ten metastable immonium ions of general structure R1R2C?NH+C4H9 (R1 = H, R2 = CH3, C2H5; R1 = R2 = CH3) are reported and discussed. Elimination of C4H8 is usually the dominant fragmentation pathway. This process gives rise to a Gaussian metastable peak; it is interpreted in terms of a mechanism involving ion-neutral complexes containing incipient butyl) cations. Metastable immonium ions ontaining an isobutyl group are unique in undergoing a minor amount of imine (R1R2C?NH) loss. This decomposition route, which also produces a Gaussian metastable peak, decreases in importance as the basicity of the imine increases. The correlation between imine loss and the presence of an isobutyl group is rationalized by the rearrangement of the appropriate ion-neutral complexes in which there are isobutyl cations to the isomeric complexes containing the thermodynamically more stable tert-butyl cations. A sizeable amount of a third reaction, expulsion of C3H6, is observed for metastable n-C4H9 +NH?CR1R2 ions; in contrast to C4H8 and R1R2C?NH loss, C3H6 elimination occurs with a large kinetic energy release (40–48 kJ mol?1) and is evidenced by a dish-topped metastable peak. This process is explained using a two-step mechanism involving a 1,5-hydride shift, followed by cleavage of the resultant secondary open-chain cations, CH3CH+ CH2CH2NHCHR1R2. 相似文献
16.
We present an electronic structure and dynamics study of the Cl + CH(4)--> HCl + CH(3) reaction. We have characterized the stationary points of the ground-state potential-energy surface using various electronic structure methods and basis sets. Our best calculations, CCSD(T) extrapolated to the complete basis-set limit based on geometries and harmonic frequencies obtained at the CCSD(T)/aug-cc-pvtz level, are in agreement with the experimental reaction energy and indirect measurements of the barrier height. Using ab initio information, we have reparametrized a semiempirical Hamiltonian so that the predictions of the improved Hamiltonian agree with the higher-level calculations in various regions of the potential-energy surface. This improved semiempirical Hamiltonian is then used to propagate quasiclassical trajectories and characterize the reaction dynamics. The good agreement of the calculated HCl rotational and angular distributions with the experiment indicates that reparametrizing semiempirical Hamiltonians is a promising approach to derive accurate potential-energy surfaces for polyatomic reactions. However, excessive energy leakage from the initial vibrational energy of the CH(4) molecule to the reaction coordinate in the trajectory calculations calls into question the suitability of the standard quasiclassical-trajectory method to describe energy partitioning in polyatomic reactions. 相似文献
17.
Real-time kinetic measurements are reported for the Cl + CH3CO → CH2CO + HCl reaction. The experiments utilize infrared spectroscopy to determine the time dependence of the ketene formed via this reaction and of the CO produced from the subsequent rapid reaction between chlorine atoms and ketene. The reaction is investigated over a pressure range of 10–200 torr and a temperature range of 215–353 K. Within experimental error the rate constant under these conditions is k5a = (1.8 ± 0.5) × 10−10 cm3 s−1. We have also examined the Cl + CH2CO reaction and found it to have a rate constant of k6 = (2.5 ± 0.5) × 10−10 cm3 s−1 independent of temperature. © John Wiley & Sons, Inc. Int J Chem Kinet 29: 421–429, 1997. 相似文献
18.
The hydrogen or deuterium atom abstraction reactions between Cl((2)P(3/2)) and methane, or its deuterated analogues CD(4) and CH(2)D(2), have been studied at mean collision energies around 0.34 eV. The experiments were performed in a coexpansion of molecular chlorine and methane in helium, with the atomic Cl reactants generated by polarized laser photodissociation of Cl(2) at 308 nm. The Cl-atom reactants and the methyl radical products were detected using (2+1) resonantly enhanced multiphoton ionization, coupled with velocity-map ion imaging. Analysis of the ion images reveals that in single-beam experiments of this type, careful consideration must be given to the spread of reagent velocities and collision energies. Using the reactions of Cl with CH(4), CD(4), and CH(2)D(2), as examples, it is shown that the data can be fitted well if the reagent motion is correctly described, and the angular scattering distributions can be obtained with confidence. New evidence is also provided that the CD(3) radicals from the Cl+CD(4) reaction possess significant rotational alignment under the conditions of the present study. The results are compared with previous experimental and theoretical works, where these are available. 相似文献
19.
A hybrid real space quantum mechanical/molecular mechanical (RS-QM/MM) method has been applied to an ionic S(N)2 reaction (OH- + CH3Cl --> CH3OH + Cl-) in water solution to investigate dynamic solvation effects of the supercritical water (SCW) on the reaction. It has been demonstrated that the approaching process of OH- to methyl group is prevented by water molecules in the ambient water (AW), while the reaction takes place easily in the gas phase. Almost the same solvation effect on the dynamics of OH- is observed in the SCW, though the bulk density of water is substantially reduced compared with that of the AW. It has been shown that the solvation of the SCW around the OH anion is locally identical to that of the AW due to the strong ion-dipole interactions between OH- and water molecules. At the transition state, the QM/MM simulations have revealed that the excess electron is quite flexible, and the charge volume, as well as the fractional charges on atoms, vary seriously depending on the instantaneous solvent configurations. However, it has been found that the solvation energy in the SCW can be qualitatively related to the HOMO volume of the system by Born's equation. 相似文献
20.
R. Peyton Thorn Walter A. Payne Xavier D. F. Chillier Louis J. Stief Fred L. Nesbitt D. C. Tardy 《国际化学动力学杂志》2000,32(5):304-316
The total rate constant k1 has been determined at P = 1 Torr nominal pressure (He) and at T = 298 K for the vinyl‐methyl cross‐radical reaction: (1) CH3 + C2H3 → Products. The measurements were performed in a discharge flow system coupled with collision‐free sampling to a mass spectrometer operated at low electron energies. Vinyl and methyl radicals were generated by the reactions of F with C2H4 and CH4, respectively. The kinetic studies were performed by monitoring the decay of C2H3 with methyl in excess, 6 < [CH3]0/ [C2H3]0 < 21. The overall rate coefficient was determined to be k1(298 K) = (1.02 ± 0.53) × 10−10 cm3 molecule−1 s−1 with the quoted uncertainty representing total errors. Numerical modeling was required to correct for secondary vinyl consumption by reactions such as C2H3 + H and C2H3 + C2H3. The present result for k1 at T = 298 K is compared to two previous studies at high pressure (100–300 Torr He) and to a very recent study at low pressure (0.9–3.7 Torr He). Comparison is also made with the rate constant for the similar reaction CH3 + C2H5 and with a value for k1 estimated by the geometric mean rule employing values for k(CH3 + CH3) and k(C2H3 + C2H3). Qualitative product studies at T = 298 K and 200 K indicated formation of C3H6, C2H2, and C3H5 as products of the combination‐stabilization, disproportionation, and combination‐decomposition channels, respectively, of the CH3 + C2H3 reaction. We also observed the secondary C4H8 product of the subsequent reaction of C3H5 with excess CH3; this observation provides convincing evidence for the combination‐decomposition channel yielding C3H5 + H. RRKM calculations with helium as the deactivator support the present and very recent experimental observations that allylic C‐H bond rupture is an important path in the combination reaction. The pressure and temperature dependencies of the branching fractions are also predicted. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 304–316, 2000 相似文献