首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoplastic polyurethane/silica nanocomposite fibers with good mechanical properties were prepared by electrospinning, using colloidal silica as the source of silica and dimethyl formamide as the solvent. The fiber morphology was examined by field emission scanning electron microscopy. The average fiber diameter is about 0.8 μm with 0–10 wt % silica, and silica nanoparticles were observed on all fiber surfaces. X‐ray photoelectron spectroscopy analysis of Si in combination with transmission electron microscopy observation suggest that silica nanoparticles have a fairly uniform distribution in the fibers rather than enriching on the fiber surfaces. Tensile tests show that the incorporation of silica nanoparticles can bring about a significant reinforcing effect without decreasing the ductility. The reinforcing effect is further confirmed by dynamic mechanical analysis. The thermoplastic polyurethane/silica composite fiber mats can adsorb gold nanoparticles after further treatment with 3‐aminopropyltriethoxysilane, demonstrating that the composite fibers could be used as functional fibers by using the properties of silica nanoparticles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

2.
Poly(methyl methacrylate) nanosize particles were synthesized by a differential microemulsion polymerization process. Sodium dodecylsulfate and ammonium persulfate were used as the surfactant and initiator, respectively. The effects of reaction conditions on the particle size have been investigated. A particle size of less than 20 nm in diameter has been achieved with surfactant/monomer and surfactant/water weight ratios of 1:18 and 1:120, i.e. much milder conditions than those previously reported in the literature.

TEM image of nanoparticles prepared via differential microemulsion polymerization.  相似文献   


3.
In this study, the aim is to describe the influence of electrospinning parameters on the morphology, the water wetting property and dye adsorption property of poly(methyl methacrylate) nanofiber mats. Specifically, the effects of solution concentration, solvent type, applied voltage, distance between the electrodes and particulate reinforcement on the diameter and shape of the nanofibers were investigated. All poly(methyl methacrylate) nanofiber mats contained beaded nanofiber structures. With increasing the polymer solution concentration, the average fiber diameter also increased. Poly(methyl methacrylate) nanofiber mat electrospun from dimethylformamide solution resulted in thicker fibers when compared with the mat electrospun from acetone solution. Increasing the electric potential difference between the collector and the syringe tip did not increase the average fiber diameter. Besides increasing the distance between the electrodes resulted in a decrease in the average fiber diameter. When compared with PMMA nanofiber mat, thicker fibers were obtained with silica nanoparticles reinforced nanofiber mat. According to the water contact angle measurements, all poly(methyl methacrylate) nanofiber mats revealed hydrophobic surface property. PMMA nanofiber mat with the highest water contact angle gave rise to the highest dye adsorption capacity.  相似文献   

4.
5.
郭朝霞  于建 《高分子科学》2015,33(9):1234-1244
Poly(ethylene terephthalate)(PET)/carbon black(CB) composite fibers with improved mechanical properties in tensile modulus and tensile strength are prepared by eletrospinning. Stable dispersions suitable for electrospinning are obtained by dispersing melt pre-compounded PET/CB composites in hexafluoroisopropanol. The fiber morphology and CB dispersion are investigated by FESEM and TEM. The addition of CB has no obvious effect on fiber diameter, and the average fiber diameters for all the samples are around 2-3 μm. CB in the fibers is in the form of submicron-sized clusters. The thermal properties of the PET/CB composite fibers are evaluated by DSC, showing almost unchanged melting temperature and crystallinity. Uniaxial tensile tests are used to measure the mechanical properties of the PET/CB composite fiber mats. The fiber mats containing 1 wt%-8.5 wt% CB have significantly improved tensile modulus compared to neat PET fiber mat, showing reinforcing effect of CB. The electrical conductivity of the fiber mats has also been tested.  相似文献   

6.
采用非共价复合方法,设计并合成了具有星形结构的聚甲基丙烯酸甲酯/星形聚乙二醇半互穿聚合物网络(PMMA/SPEG)和聚甲基丙烯酸甲酯/线性聚乙二醇半互穿聚合物网络(PMMA/LPEG).研究了PEG分子量对PMMA/SPEG和PMMA/LPEG的热性能、机械性能、动态机械性能和形状记忆性能的影响.结果表明,与PMMA/LPEG相比,星形结构的嵌入显著提高了PMMA/SPEG复合物的机械性能、形状回复率和回复速度.采用Edwards管道模型理论对其形状记忆效应的分子机理进行了阐释,利用材料的应力松弛特性对机理分析进行了验证.  相似文献   

7.
本文从仿生角度出发,模拟细胞外基质独特结构,采用静电纺丝法成功制备出HA均匀分布的HA/Gelatin复合纤维。根据影响静电纺丝的主要因素,分别考察了聚合物浓度、无机物含量、溶剂浓度、电纺电压等因素对纤维形貌和结构的影响。研究结果表明:聚合物浓度是制备复合纤维的首要影响因素,影响复合纤维的直径;无机物的添加使聚合物中的氢键减少,降低了电纺液的粘度,影响复合纤维中珠状物的形成;制备分布均匀的电纺纤维,溶剂起很大的作用,影响纤维的粘联;电纺电压增大使电场力过大,聚合物被强力拉伸,单根纤维出现卷曲。  相似文献   

8.
Exfoliated nanocomposite based on Mg, Al layered double hydroxide (Mg,Al-LDH) and poly(methyl methacrylate) (PMMA) has been prepared by exfoliation/adsorption process with acetone as co-solvent. The product was characterized by X-ray diffraction (XRD), thermal analysis and High Resolution Transmission Electronic Microscope (HREM). The results suggest that the brucite-like sheets of LDH disperse individually in the polymer matrix, and the thermal stability of the nanocomposite increases highly.  相似文献   

9.
Poly(ethylene-co-vinyl acetate)/clay nanocomposite fibers were fabricated using electrospinning. The fiber diameters were controlled by varying the polymer/chloroform concentration, which resulted in fibers with diameters ranging from 1 to 15 μm. The clay concentration was varied from 0.35 to 6.6 wt %. Scanning electron microscopy revealed that the fiber diameter increased with increasing clay concentration, whereas beading decreased. Transmission electron microscopy revealed a disruption of the spherulite structures by clay, which is consistent with heterogeneous nucleation. Shear modulus force microscopy indicated a reduction in melting point (Tm) with decreasing diameter for fibers thinner than 15 μm, which was confirmed by temperature dependent X-ray diffraction data. For fibers thinner than 8 μm, the presence of clay further enhanced the reduction of Tm. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2501–2508, 2009  相似文献   

10.
One of the applications of graphene in which its scalable production is of utmost importance is the development of polymer composites. Among the techniques used to produce graphene flakes, the liquid-phase exfoliation (LPE) of graphite stands out due to its versatility and scalability. However, solvents suitable for the LPE process are generally toxic and have a high boiling point, making the processing challenging. The use of low boiling point solvents could be convenient for the processing, due to the easiness of their removal. In this study, the use of poly(methyl methacrylate) (PMMA) as a stabilizing agent is proposed for the production of graphene flakes in a low boiling point solvent, that is, acetone. The graphene dispersions produced in the mixture acetone-PMMA have higher concentration, +175 %, and contain a higher percentage of few-layer graphene flakes (<5 layers), that is, +60 %, compared to the dispersions prepared in acetone. The as-produced graphene dispersions are used to develop graphene/acrylonitrile-butadiene-styrene composites. The mechanical properties of the pristine polymer are improved, that is, +22 % in the Young's modulus, by adding 0.01 wt. % of graphene flakes. Moreover, a decrease of ≈20 % in the oxygen permeability is obtained by using 0.1 wt. % of graphene flakes filler, compared to the unloaded matrix.  相似文献   

11.
Poly (vinylidiene fluoride) (PVDF)/poly (methyl methacrylate) (PMMA)/cellulose nanocrystal (CNC) nanocomposites were prepared by solution blending. Non-isothermal crystallization of PVDF/PMMA (70/30) blend and its composites was investigated using differential scanning calorimetry. It was found that the addition of CNCs played a positive role in both the crystallization rate and crystallization percentage. The addition of CNCs increased the initial crystallization temperature, peak crystallization temperature, and crystalline enthalpy. The Avrami index indicated that CNCs did not change the crystallization mechanism; while other parameters derived from Jeziorny theory and Mo's method, including Z c , F(t), and α, further verified the positive role played by CNCs.  相似文献   

12.
聚甲基丙烯酸甲酯型高分子染料的合成   总被引:2,自引:0,他引:2  
王雷  何茵 《应用化学》1998,15(5):108-110
高分子染料的合成研究起于60年代初[1].1973年,Marechal等实现了无色高分子材料与有色染料分子的化学键合[2~3].目前,高分子染料已广泛应用于化妆品、涂料、填料、食品等领域并开始探索在液晶显示、半导体材料、激光记录、非线性光学材料、亲和...  相似文献   

13.
Poly(L-lactic acid)(PLLA)-based composites exhibit wide applications in many fields.However,most of hydrophilic fillers usually accelerate the hydrolytic degradation of PLLA,which is unfavorable for the prolonging of the service life of the articles.In this work,a small quantity of poly(methyl methacrylate)(PMMA)(2 wt%-10 wt%)was incorporated into the PLLA/carbon nanotubes(CNTs)composites.The effects of PMMA content on the dispersion of CNTs as well as the microstructure and hydrolytic degradation behaviors of the composites were systematically investigated.The results showed that PMMA promoted the dispersion of CNTs in the composites.Amorphous PLLA was obtained in all the composites.Largely enhanced hydrolytic degradation resistance was achieved by incorporating PMMA,especially at relatively high PMMA content.Incorporating 10 wt%PMMA led to a dramatic decrease in the hydrolytic degradation rate from 0.19%/h of the PLLA/CNT composite sample to 0.059%/h of the PLLA/PMMA-10/CNT composite sample.The microstructure evolution of the composites was also detected,and the results showed that no crystallization occurred in the PLLA matrix.Further results based on the interfacial tension calculation showed that the enhanced hydrolytic degradation resistance of the PLLA matrix was mainly attributed to the relatively strong interfacial affinity between PMMA and CNTs,which prevented the occurrence of hydrolytic degradation at the interface between PLLA and CNTs.This work provides an alternative method for tailoring the hydrolytic degradation ability of the PLLA-based composites.  相似文献   

14.
陶荟春  朱豫  由吉春 《应用化学》2016,33(8):894-899
采用温控原子力显微镜方法,在线跟踪了远离临界组成聚甲基丙烯酸甲酯/苯乙烯-丙烯腈无规共聚物(PMMA/SAN)共混薄膜的表面相分离行为,并研究了其动力学规律。 结果表明,在SAN含量为70%的样品中观察到了表面相分离行为,其过程可分为早期、中期和晚期3个阶段,分别对应特征化的标度指数:早期结果验证了Cahn线性理论,即标度指数为零;中期相行为主要受“碰撞-扩散”机理控制,因此表现出1/3的标度指数;在相分离后期,流体动力学主导了相区的生长和归并行为,此时标度指数变为2/3。 我们的研究结果对于深刻理解高分子相行为具有积极作用,并将对高分子薄膜加工提供必要的指导。  相似文献   

15.
Poly(methyl methacrylate) (PMMA)/silica/titania ternary nanocomposites with covalent bonding interaction between polymer and inorganic phases have been prepared using a novel non-hydrolytic sol-gel method. Transmission electron microscope (TEM) image of silica/titania binary inorganic component indicates a core-shell-like structure. Scanning electron microscope (SEM) images suggest that the well dispersed silica/titania particles in the hybrid are on the nanometer-scale. The transparencies of nanocomposites are maintained in visible region while the absorption band in ultraviolet (UV) region is red shifted with increasing inorganic content. The thermogravimetric analysis (TGA) results show that the thermal stability of PMMA copolymer increases dramatically with the addition of silica/titania moieties both in nitrogen and in air.  相似文献   

16.
In this study, the surface plasmon effect of Au nanoparticles was successfully realized in the solid state by embedding the Au nanoparticles on the surface of the transparent polymer fibers for the first time. Electrospinning a poly(methyl methacrylate) (PMMA) and HAuCl4 mixture followed by a wet chemical reduction, the gold nanoparticles were formed on the PMMA nanocomposite electrospun fibers in a well‐distributed manner to give photostable purple color. The Au nanoparticles were all sphere shaped with an average diameter of 12 nm. Specifically, simply adjusting HAuCl4 salt concentration in the electrospinning solution, it is able to control the electrospun fiber diameter and gold nanoparticle content in the resulting PMMA/Au nanocomposite fibers. Therefore, the developed method described herein is simple and effective for the large volume production of PMMA/Au nanocomposite fibers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Poly(methyl methacrylate) (PMMA) nanocomposites containing (methacryloxy)propyl polyhedral oligomeric silsesquioxane (methacryl‐POSS) were prepared by bulk‐polymerization process. The structures of the products were characterized by FTIR, solid‐state NMR, TEM, XRD, DSC, TGA, XPS and UV‐Vis spectra. The hybrid materials were found to be largely homogeneous. DSC and TGA results indicate that the thermal properties of PMMA nanocomposites are significantly improved. The glass transition temperature (Tg) and thermal decomposition temperature (Tdec) of the nanocomposites increased by 58 and 110°C, respectively. The bulk hybrid material maintains excellent optical transparency in visible region.  相似文献   

18.
The poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposite was prepared by emulsifier-free emulsion technique and its structure and properties were characterized with infra red, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, and cone calorimetry. The highly exfoliated MMT layers with dimension 1-2 nm in thickness were randomly dispersed in the polymer matrix containing MMT lower than 5% w/v, whereas the intercalated structure was predominant with MMT content higher than 5% w/v. Consequently, the fine dispersion of the MMT and the strong interactions between PMMA and MMT created significant improvement of the thermo-stability and fire retardancy of the nanocomposite. The combustion behavior has been evaluated using oxygen consumption cone calorimetry. In addition, a scheme was proposed to describe fire retardancy of PMMA and MMT as well as the correlation between the interaction and structure in polymer/clay systems. The biodegradability of the nanocomposite fire-retardant was tested for its better commercialization.  相似文献   

19.
A facile and cost-effective method to prepare poly(methyl methacrylate) (PMMA)/graphene oxide (GO) nanocomposites was developed by in situ polymerization. By using thermal-initiated and GO-initiated polymerization of methyl methacrylate (MMA), no extra radical initiator was added during the reaction. Without any pre-functionalization of GO, PMMA chains were covalently bonded to its surface, which was confirmed by Fourier-transform infrared, atomic force microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy investigations. TGA analysis showed that the mass ratio of grafted PMMA and GO was as high as 1.7. Transmission electron microscopy and X-ray powder diffraction investigations demonstrated that the grafting of PMMA chains to GO surfaces resulted in homogeneous dispersion of GO sheets in PMMA matrix, which led to a commendable performance on its mechanical and thermal properties. Dynamic mechanical analysis showed that, at a loading level of just 0.5 wt% for the nanocomposites, the storage modulus of the nanocomposites was improved 14%, and the glass transition temperature was increased 12°C in comparison with that of neat PMMA. Thermogravimetric analysis showed that the onset degradation temperature of the nanocomposites was increased 13°C with a GO content of 0.25 wt%.  相似文献   

20.
Dispersed calcium carbonate particles are encapsulated with poly(methyl methacrylate). The optimum condition for the polymerization is investigated; and the encapsulated particles are characterized by spectrophotometric analysis, acid decomposition, thermal analysis, and microscopic observation. From the conversion comparison of the MMA monomer it is found that the optimum concentration of polymerization initiator is 1.58 × 10?3 mol/L. The highest yield of encapsulation is obtained at 250 rpm with a concentration of 0.5 wt % surfactant (sodium dodecyl benzene sulfonate). A comparison of the Fourier transform IR spectra distinctly indicates the formation of PMMA on the surface of the calcium carbonate particles. The outcome of an acid decomposition test proves that the PMMA coating protects the particles. In addition, thermal analyses and microscopic observation characterize the PMMA on the surface of encapsulated particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4063–4073, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号