首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Statistical copolymerizations of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) with 2‐vinylpyridine (2VP) with 80 to 99 mol % DMAEMA in the feed utilizing a succinimidyl ester‐terminated alkoxyamine unimolecular initiator (NHS‐BlocBuilder) at 80 °C in bulk were performed. The effectiveness of 2VP as a controlling comonomer is demonstrated by linear increases in number‐average molecular weight versus conversion, relatively low PDI (1.5–1.6 with up to 98% DMAEMA) and successful chain extensions with 2VP. Additional free nitroxide does not significantly improve control for the DMAEMA/2VP copolymerizations. The succinimidyl ester on the initiator permits coupling to amine‐terminated poly(propylene glycol) (PPG), yielding an effective macroinitiator for synthesizing a doubly thermo‐responsive block copolymer of PPG‐block‐P(DMAEMA/2VP). A detailed study of the thermo‐ and pH‐sensitivities of the statistical and block copolymers is also presented. The cloud point temperature of the statistical copolymers is fine tuned from 14 to 75 °C by varying polymer composition and pH. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

2.
A new class of temperature and pH dual‐responsive and injectable supramolecular hydrogel was developed, which was formed from block copolymer poly(ethylene glycol)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] (PEG‐b‐PDMAEMA) and α‐cyclodextrin (α‐CD) inclusion complexes (ICs). The PEG‐b‐PDMAEMA diblock copolymers with different ratio of ethylene glycol (EG) to (2‐dimethylamino)ethyl methacrylate (DMAEMA) (102:46 and 102:96, respectively) were prepared by atom transfer radical polymerization (ATRP). 1H NMR measurement indicated that the ratio of EG unit to α‐CD in the resulted ICs was higher than 2:1. Thermal analysis showed that thermal stability of ICs was improved. The rheology studies showed that the hydrogels were temperature and pH sensitive. Moreover, the hydrogels were thixotropic and reversible. The self‐assembly morphologies of the ICs in different pH and ionic strength environment were studied by transmission electron microscopy. The formed biocompatible micelles have potential applications as biomedical and stimulus‐responsive material. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2143–2153, 2010  相似文献   

3.
A series of poly(2‐(dimethylamino)ethyl methacrylate‐ran‐9‐(4‐vinylbenzyl)‐9H‐carbazole) (poly(DMAEMA‐ran‐VBK)) random copolymers, with VBK molar feed compositions fVBK,0 = 0.02–0.09, were synthesized using 10 mol % [tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino] nitroxide (SG1) relative to 2‐([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino]oxy)‐2‐methylpropionic acid (BlocBuilder) at 80 °C and 90 °C. Controlled polymerizations were observed, even with fVBK,0 = 0.02, as reflected by a linear increase in number average molecular weight (Mn) versus conversion X ≤ 0.6 with final copolymers characterized by relatively narrow, monomodal molecular weight distributions (Mw/Mn ≈ 1.5). Poly(DMAEMA‐ran‐VBK) copolymers were deemed sufficiently pseudo‐“living” to reinitiate a second batch of N,N‐dimethylacrylamide (DMAA), with very few apparent dead chains, as indicated by the monomodal shift in the gel permeation chromatography chromatograms. Poly(DMAEMA‐ran‐VBK) random copolymers exhibited tuneable lower critical solution temperature (LCST), in aqueous solution, by modifying copolymer composition, solution pH and by the addition of the water‐soluble poly(DMAA) segment. 1H NMR analysis determined that, in water, the VBK units of the poly(DMAEMA‐ran‐VBK) random copolymer were segregated to the interior of the copolymer aggregate regardless of solution temperature and that poly(DMAEMA‐ran‐VBK)‐b‐poly(DMAA) block copolymers formed micelles above the LCST. In addition, the final random copolymer and block copolymer exhibited temperature dependent fluorescence due to the VBK units. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
5.
The atom transfer radical copolymerization of styrene with 2‐[(perfluorononenyl)oxy] ethyl methacrylate was performed in benzotrifluoride at 100 °C in the presence of 1‐bromoethyl benzene (1‐BrEB), cuprous bromide (CuBr), and α,α′‐bipyridine (bpy; [1‐BrEB]0/[CuBr]0/[bpy]0 = 1/1/3). The experimental results demonstrate that this polymerization proceeded in a living fashion, producing fluorinated random copolymers with narrow polydispersities, controlled molecular weights, and desired unit ratios. The compositions of the copolymers were calculated from 1H NMR spectra. The monomer reactivity ratios were obtained with the Skeist integral method. The copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and differential scanning calorimetry. The solid surface characteristics of the copolymers were evaluated with contact‐angle measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2670–2676, 2001  相似文献   

6.
Polycaprolactone‐graft‐Poly(2‐(dimethylamino)ethyl methacrylate‐co‐methoxy polyethylene glycol monomethacrylate) (PCL‐graft‐P(DMAEMA‐co‐mPEGMMA)) was synthesized by combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). PCL‐graft‐P(DMAEMA‐co‐mPEGMMA) was characterized by FTIR, 1H NMR, and GPC. PCL‐graft‐P(DMAEMA‐co‐mPEGMMA) with expected composition and structure was achieved. pH‐ and thermo‐sensitive properties of the PCL‐graft‐P(DMAEMA‐co‐mPEGMMA) nanoparticles prepared by the nanoprecipitation method were investigated by TEM and DLS. With increase in the temperature, the size of PCL‐graft‐P(DMAEMA‐co‐mPEGMMA) nanoparticles is decreased under base environment. Furthermore, in vitro transfection and toxicity assays were tested in 293T cells. The results indicate that PCL‐graft‐P(DMAEMA‐co‐PEGMMA) has lower cytotoxicity at N/P ratios less than 10 with transfection efficiency concomitantly reducing at N/P ratios less than 20 compared to PCL‐graft‐PDMAEMA as the control. However, PCL‐graft‐P(DMAEMA‐co‐PEGMMA) presents higher transfection efficiency at N/P ratios more than 20 compared to PCL‐graft‐PDMAEMA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A series of copolymers composed of methoxy poly(ethylene glycol) and a hydrophobic block of poly(ɛ-caprolactone-co-propargyl carbonate) grafted with poly(2-[dimethylamino]ethyl methacrylate) was synthesized by combining ring opening polymerization, azide-alkyne click reaction, and atom transfer radical polymerization (ATRP). Well-defined copolymers with a target composition and a tailored structure were achieved via the grafting from approach by using a single catalytic system for both click reaction and ATRP. Kinetic studies demonstrated the controlled/living character of the employed polymerization methods. The thermal properties and self-assembly in aqueous medium of the graft copolymers were dependent on their composition. The resulting polymeric materials showed low cytotoxicity toward L929 cells, demonstrating their potential for biomedical applications. This type of materials containing cationic side chains tethered to biocompatible and biodegradable segments could be the basis for promising candidates as drug and gene delivery systems.  相似文献   

8.
Fluoroalkyl methacrylates, 2,2,2‐trifluoroethyl methacrylate ( 1 ), hexafluoroisopropyl methacrylate ( 2 ), 1,1,1,3,3,3‐hexafluoro‐2‐methyl‐2‐propyl methacrylate ( 3 ), and perfluoro t‐butyl methacrylate ( 4 ) were synthesized. Homopolymers and copolymers of these fluoroalkyl methacrylates with methyl methacrylate (MMA) were prepared and characterized. With the exception of the copolymers of MMA and 2,2,2‐trifluoroethyl methacrylate ( 1 ), the glass transition temperatures (Tgs) of the copolymers were found to deviate positively from the Gordon‐Taylor equation. The positive deviation from the Gordon‐Taylor equation could be accounted for by the dipole–dipole intrachain interaction between the methyl ester group and the fluoroalkyl ester group of the monomer units. These Tg values of the copolymers were found to fit with the Schneider equation. The fitting parameters in the Schneider equation were calculated, and R2 values, the coefficients of determination, were almost 1.0. The refractive indices of the copolymers, measured at 532, 633, and 839 nm wavelengths, were lower than that of PMMA and showed a linear relationship with monomer composition in the copolymers. 2 and MMA have a tendency to polymerize in an alternating uniform monomer composition, resulting in less light scattering. This result suggests that the copolymer prepared with an equal molar ratio of 2 and MMA may have useful properties with applications in optical devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4748–4755, 2008  相似文献   

9.
Homopolymers of 2‐(trimethylsiloxy)ethyl methacrylate of degrees of polymerization from 5 to 50 were synthesized by group transfer polymerization in tetrahydrofuran (THF) using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene as the initiator and tetrabutylammonium bibenzoate as the catalyst. These polymers were first converted to poly[2‐(hydroxy)ethyl methacrylate]s by removal of the trimethylsilyl‐protecting groups by acidic hydrolysis, and subsequently transformed to poly{2‐[(3,5‐dinitrobenzoyl)oxy]ethyl methacrylate}s by reaction with 3,5‐dinitrobenzoyl chloride in the presence of triethylamine. Gel permeation chromatography in THF and proton nuclear magnetic resonance (1H NMR) spectroscopy in CDCl3 and d6 dimethyl sulfoxide were used to characterize the polymers in terms of their molecular weight and composition. The molecular weights were found to be close to the values expected from the polymerization stoichiometry and the molecular weight distributions were narrow, with polydispersity indices around 1.1. The hydrolysis and reesterification steps were found to be almost quantitative for all polymers. Differential scanning calorimetry and thermal gravimetric analysis were also employed to measure the glass transition temperatures (Tg 's) and decomposition temperatures, which were determined to be approximately 80 and 320 °C, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1457–1465, 2000  相似文献   

10.
11.
The dispersion polymerization of styrene in carbon dioxide with a series of copolymers of poly(propylene glycol) methacrylate (PPGMA) and 2‐(perfluorooctyl)ethyl methacrylate (FOEMA) as the polymerization dispersants was examined. It was demonstrated that PPGMA and FOEMA copolymers and polymers containing 52–100% FOEMA could be used as effective dispersants for the polymerization, and the composition of the copolymeric dispersant had a dramatic effect on both the polymerization yield and the morphology of the resulting polystyrene. The effects of the concentrations of the copolymeric dispersants, the concentrations of the monomer, and the reaction pressure were also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3804–3815, 2003  相似文献   

12.
A doubly hydrophilic triblock copolymer of poly(N,N‐dimethylamino‐2‐ethyl methacrylate)‐b‐Poly(ethylene glycol)‐b‐poly(N,N‐dimethylamino‐2‐ethylmethacrylate) (PDMAEMA‐b‐PEG‐b‐PDMAEMA) with well‐defined structure and narrow molecular weight distribution (Mw/Mn = 1.21) was synthesized in aqueous medium via atom transfer radical polymerization (ATRP) of N,N‐dimethylamino‐2‐ethylmethacrylate (DMAEMA) initiated by the PEG macroinitiator. The macroinitiator and triblock copolymer were characterized with 1H NMR and gel permeation chromatography (GPC). Fluorescence spectroscopy, dynamic light scattering (DSL), transmittance measurement, and rheological characterization were applied to investigate pH‐ and temperature‐induced micellization in the dilute solution of 1 mg/mL when pH > 13 and gelation in the concentrated solution of 25 wt % at pH = 14 and temperatures beyond 80 °C. The unimer of Rh = 3.7 ± 0.8 nm coexisted with micelle of Rh = 45.6 ± 6.5 nm at pH 14. Phase separation occurred in dilute aqueous solution of the triblock copolymer of 1 mg/mL at about 50 °C. Large aggregates with Rh = 300–450 nm were formed after phase separation, which became even larger as Rh = 750–1000 nm with increasing temperature. The gelation temperature determined by rheology measurement was about 80 °C at pH 14 for the 25 wt % aqueous solution of the triblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5869–5878, 2008  相似文献   

13.
We report on novel diblock copolymers of poly(N‐vinylcaprolactam) (PVCL) and poly(N‐vinyl‐2‐pyrrolidone) (PVPON) (PVCL‐b‐PVPON) with well‐defined block lengths synthesized by the MADIX/reversible addition‐fragmentation chain transfer (RAFT) process. We show that the lower critical solution temperatures (LCST) of the block copolymers are controllable over the length of PVCL and PVPON segments. All of the diblock copolymers dissolve molecularly in aqueous solutions when the temperature is below the LCST and form spherical micellar or vesicular morphologies when temperature is raised above the LCST. The size of the self‐assembled structures is controlled by the molar ratio of PVCL and PVPON segments. The synthesized homopolymers and diblock copolymers are demonstrated to be nontoxic at 0.1–1 mg mL?1 concentrations when incubated with HeLa and HEK293 cancer cells for various incubation times and have potential as nanovehicles for drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2725–2737  相似文献   

14.
The effects of comb‐like amphiphilic block copolymer architectures on the physical properties such as sol‐gel transition and micellization behaviors with the change of temperature and pH were examined. Comb‐like poly((poly(ethylene glycol)‐b‐(poly(lactic acid‐co‐glycolic acid))acrylate‐co‐acrylic acid) (poly((PEG‐b‐PLGA)A‐co‐AA)) copolymers were synthesized by coupling of poly(acrylic acid) (PAA) with two different kinds of PEG‐b‐PLGA diblock copolymers to investigate the effects of the number of branches and hydrophilicity/hydrophobicity on the sol‐gel transition and micellization. The molecular weights and chemical structures were confirmed by GPC and 1H NMR. The number of PEG‐b‐PLGA branches was gradually deviated from the feed molar ratio with increasing the molecular weight and the number of branches and due to the bulkiness of PEG‐b‐PLGA. Poly[(PEG‐b‐PLGA)A‐co‐AA] aqueous solutions showed thermosensitive sol‐gel transition behavior, and the gelation took place at lower concentration with increasing the number of branches and PLGA chain length due to the increase of hydrophobicity. The temperature, at which abrupt increase of viscosity by dynamic rheometer appeared, was also in good agreement with sol‐gel transition by tube‐titling method. The CMC, calculated from UV‐Visible spectroscopy using DPH as hydrophobic dye, also decreased with increasing the number of PEG‐b‐PLGA branches and PLGA chain length with same reason. The micelle size was increased with increasing temperature at the initial stage, however, decreased with further increase of temperature, since the micelles were, first, aggregated by hydrophobic intermolecular interaction, and then fragmented by dehydration of PEG segments with increasing temperature. PH‐sensitive PAA backbone played a key role in physical properties. With decreasing pH, sol‐to‐gel transition temperature, CMC values, and micelle size were decreased because of the increase of hydrophobicity resulting form non‐ionized acrylic acid. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1287–1297, 2010  相似文献   

15.
The poly(ethylene glycol)/poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PEG/PDMAEMA) double hydrophilic block copolymers were synthesized by atom transfer radical polymerization using mPEG‐Br or Br‐PEG‐Br as macroinitiators. The narrow molecular weight distribution of PEG/PDMAEMA block copolymers was identified by gel permeation chromatography results. The thermosensitivity of PEG/PDMAEMA block copolymers in aqueous solution was revealed to depend significantly on pH, ionic strength, chain structure, and concentration of the block copolymers. By optimizing these factors, the cloud point temperature of PEG/PDMAEMA block copolymers can be limited within body temperature range (30–37 °C), which suggests that PEG/PDMAEMA block copolymers could be a good candidate for drug delivery systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 503–508, 2010  相似文献   

16.
17.
We report here a novel approach for making reversibly coagulatable and redispersible polyacrylate latexes by emulsion (co)polymerization of methyl methacrylate (MMA) using a polymeric surfactant, poly(2‐(dimethylamino)ethyl methacrylate)10block‐poly(methyl methacrylate)14. The surfactant was protonated with HCl prior to use. The resulted PMMA latexes were readily coagulated with trace amount of caustic soda. The coagulated latex particles, after washing with deionized water, could be redispersed into fresh water to form stable latexes again by CO2 bubbling with ultrasonication. The recovered latexes could then be coagulated by N2 bubbling with gentle heating. These coagulation and redispersion processes were repeatable by the CO2/N2 bubbling.  相似文献   

18.
The synthesis of amphiphilic triblock copolymers, poly(di[methylamine]ethyl methacrylate)‐b‐poly(cyclohexyl methacrylate)‐b‐poly(di[methylamine]ethyl methacrylate) PDMAE‐b‐PCH‐b‐PDMAE, has been performed by atom transfer radical polymerisation. Those have been obtained in a well‐controlled manner in terms of molecular weight and polydispersity index. The triblock copolymer characterisation has been made in condensed state and in solution. The existence of microphase separation has been confirmed by differential scanning calorimetry. However, the domains of both inner and outer blocks seem not to be ordered for one another from small‐angle X‐ray scattering (SAXS) measurements using synchrotron radiation. The micelle formation in dilute methanol solutions has been confirmed for all triblock copolymers by dynamic light scattering analyses. The size of these micelles has been demonstrated to be dependent on the molecular weight. Similar observations have been made in concentrate methanol solutions by using SAXS experiments, pointed also out that an increment of the intermicelle interactions is produced as the concentration increases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 85–92, 2008  相似文献   

19.
Copolymerizations of methyl 2‐acetamidoacrylate (MAA) with methyl methacrylate (MMA) were carried out at 60 °C in chloroform. Copolymers containing MAA units in the range of 83–90 mol % exhibited a lower critical solution temperature (LCST), although homopolymers of MAA and MMA did not. The LCST of polymer solutions decreased with (1) an increase in the concentration of the copolymer, (2) a decrease in the MAA content in the copolymer, and (3) an increase in the concentration of salts added. The effectiveness of anionic species for reducing the LCST is NO < Cl? < SO < SO. Divalent anion is more effective for lowering the LCST than monovalent anion. However, there is no difference between cationic species in the salting‐out effect. Sodium carbonate and sodium phosphate had a salting‐in effect. Salting‐out coefficients were evaluated from the relationship between the logarithm of solubility of the copolymers and the salt concentration. Salting‐out coefficients of the copolymer depended not on the composition of the copolymers but on the salt added. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1945–1951, 2002  相似文献   

20.
Block copolymers of poly(glycidol)‐b‐poly(4‐vinylpyridine) were obtained by ATRP of 4‐vinylpyridine initiated by ω‐(2‐chloropropionyl) poly(glycidol) macroinitiators. By changing the monomer/macroinitiator ratio in the synthesis polymers with varied P4VP/PGl molar ratio were obtained. The obtained block copolymers showed pH sensitive solubility. It was found that the linkage of a hydrophilic poly(glycidol) block to a P4VP influenced the pKa value of P4VP. DLS measurements showed the formation of fully collapsed aggregates exceeding pH 4.7. Above this pH values the collapsed P4VP core of the aggregates was stabilized by a surrounding hydrophilic poly(glycidol) corona. The size of the aggregates depended significantly upon the composition of the block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1782–1794, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号