共查询到20条相似文献,搜索用时 11 毫秒
1.
Yanfeng Zhang Weiyin Gu Hangxun Xu Shiyong Liu 《Journal of polymer science. Part A, Polymer chemistry》2008,46(7):2379-2389
Poly(2‐(dimethylamino)ethyl methacrylate)‐b‐poly(γ‐methacryloxypropyl‐trimethoxysilane) (PDMA‐b‐PMPS) was synthesized via consecutive reversible addition‐fragmentation chain transfer (RAFT) polymerizations in 1,4‐dioxane. Subsequent micellization of the obtained amphiphilic diblock polymer in aqueous solution led to the formation of nanoparticles consisting of hydrophobic PMPS cores and well‐solvated PDMA shells. Containing tertiary amine residues, PDMA blocks in micelle coronas can spontaneously catalyze the sol–gel reactions of trimethoxysilyl groups within PMPS cores, leading to the formation of hybrid nanoparticles coated with PDMA brushes. Transmission electron microscopy (TEM) and laser light scattering (LLS) revealed the presence of monodisperse spherical hybrid nanoparticles, and the grafting density of PDMA chains at the surface of nanoparticle cores was estimated to be ~5.8 nm2/chain. PDMA brushes exhibit dual stimuli‐responsiveness, and the swelling/collapse of them can be finely tuned with solution pH and temperatures. The obtained multi‐responsive hybrid nanoparticles might find potential applications in fields such as smart devices, recyclable catalysts, and intelligent nanocarriers for drug delivery or gene transfection. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2379–2389, 2008 相似文献
2.
MD. Daloar Hossain Le Thi Bao Tran Jong Myung Park Kwon Taek Lim 《Journal of polymer science. Part A, Polymer chemistry》2010,48(22):4958-4964
A new, efficient method for synthesizing stable nanoparticles with poly(ethylene oxide) (PEO) functionalities on the core surface, in which the micellization and crosslinking reactions occur in one pot, has been developed. First, amphiphilic PEO‐b‐PS copolymers were synthesized by reversible addition fragmentation chain transfer (RAFT) radical polymerization of styrene using (PEO)‐based trithiocarbonate as a macro‐RAFT agent. The low molecular weight PEO‐b‐PS copolymer was dissolved in isopropyl alcohol where the block copolymer self‐assembled as core‐shell micelles, and then the core‐shell interface crosslink was performed using divinylbenzene as a crosslinking agent and 2,2′‐azobisisobutyronitrile as an initiator. The design of the amphiphilic RAFT agent is critical for the successful preparation of core‐shell interface crosslinked micellar nanoparticles, because of RAFT functional groups interconnect PEO and polystyrene blocks. The PEO functionality of the nanoparticles surface was confirmed by 1H NMR and FTIR. The size and morphology of the nanoparticles was confirmed by scanning electron microscopy, transmission electron microscopy, and dynamic laser light scattering analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
3.
Heng Zhou Chonggao Liu Chengqiang Gao Yaqing Qu Keyu Shi Wangqing Zhang 《Journal of polymer science. Part A, Polymer chemistry》2016,54(11):1517-1525
Polymerization‐induced self‐assembly of block copolymer through dispersion RAFT polymerization has been demonstrated to be a valid method to prepare block copolymer nano‐objects. However, volatile solvents are generally involved in this preparation. Herein, the in situ synthesis of block copolymer nano‐objects of poly(ethylene glycol)‐block‐polystyrene (PEG‐b‐PS) in the ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIN][PF6]) through the macro‐RAFT agent mediated dispersion polymerization is investigated. It is found that the dispersion RAFT polymerization of styrene in the ionic liquid of [BMIN][PF6] runs faster than that in the alcoholic solvent, and the dispersion RAFT polymerization in the ionic liquid affords good control over the molecular weight and the molecular weight distribution of the PEG‐b‐PS diblock copolymer. The morphology of the in situ synthesized PEG‐b‐PS diblock copolymer nano‐objects, e.g., nanospheres and vesicles, in the ionic liquid is dependent on the polymerization degree of the solvophobic block and the concentration of the fed monomer, which is somewhat similar to those in alcoholic solvent. It is anticipated that the dispersion RAFT polymerization in ionic liquid broads a new way to prepare block copolymer nano‐objects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1517–1525 相似文献
4.
Synthesis and characterization of hyperbranched amphiphilic block copolymers prepared via self‐condensing RAFT polymerization 下载免费PDF全文
Maria Rikkou‐Kalourkoti Marios Elladiou Costas S. Patrickios 《Journal of polymer science. Part A, Polymer chemistry》2015,53(11):1310-1319
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319 相似文献
5.
Ling Zhang Kamani Katapodi Thomas P. Davis Christopher Barner‐Kowollik Martina H. Stenzel 《Journal of polymer science. Part A, Polymer chemistry》2006,44(7):2177-2194
Poly(2‐hydroxyethyl acrylate)–poly(n‐butyl acrylate) block copolymers were synthesized with the reversible addition–fragmentation chain transfer (RAFT) process. The block copolymers were synthesized successfully with either poly(2‐hydroxyethyl acrylate) or poly(n‐butyl acrylate) macro‐RAFT agents. The resulting block copolymers had narrow molecular weight distributions (polydispersity index = 1.3–1.4). Copolymer self‐aggregation in water yielded micelles, with the hydrodynamic diameter (Dh) values of the aggregates dependent on the length of both blocks according to Dh ~ NBA1.17NHEA0.57, where NBA is the number of repeating units of n‐butyl acrylate and NHEA is the number of repeating units of 2‐hydroxyethyl acrylate. The micelles were subsequently stabilized via chain extension of the block copolymer with a crosslinking agent. The successful chain extension in a micellar system was confirmed by an increase in the molecular weight, which was detected with membrane osmometry. The crosslinked particles showed noticeably different aggregation behavior in diverse solvent systems. The uncrosslinked micelles formed by the block copolymer (NHEA = 260, NBA = 75) displayed a definite critical micelle concentration at 5.4 × 10?4 g L?1 in aqueous solutions. However, upon crosslinking, the critical micelle concentration transition became obscure. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2177–2194, 2006 相似文献
6.
Bruno Grignard Christine Jérôme Cédric Calberg Christophe Detrembleur Robert Jérôme 《Journal of polymer science. Part A, Polymer chemistry》2007,45(8):1499-1506
1H,1H,2H,2H‐Heptadecafluorodecyl acrylate (AC8) was polymerized by reversible addition–fragmentation chain transfer and copolymerized with 2‐hydroxyethyl acrylate with the formation of random and block copolymers, respectively. The kinetics of the (co)polymerization was monitored with 1H NMR spectroscopy and showed that the homopolymerization and random copolymerization of AC8 were under control. As a result of this control and the use of S‐1‐dodecyl‐S‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate as a chain‐transfer agent, the copolymer chains were end‐capped by an α‐carboxylic acid group. Moreover, the controlled polymerization of AC8 was confirmed by the successful synthesis of poly(1H,1H,2H,2H‐heptadecafluorodecyl acrylate)‐b‐poly(2‐hydroxyethyl acrylate) diblock copolymers, which were typically amphiphilic compounds. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1499–1506, 2007 相似文献
7.
Core‐shell particles with glycopolymer shell and polynucleoside core via RAFT: From micelles to rods
Samuel Pearson Nathan Allen Martina H. Stenzel 《Journal of polymer science. Part A, Polymer chemistry》2009,47(6):1706-1723
Amphiphilic block copolymers were synthesized via the reversible addition fragmentation chain transfer (RAFT) copolymerisation of 2‐methacrylamido glucopyranose (MAG) and 5′‐O‐methacryloyl uridine (MAU). Homopolymerisations of both monomers using (4‐cyanopentanoic acid)‐4‐dithiobenzoate (CPADB) proceeded with pseudo first order kinetics in a living fashion, displaying linear evolution of molecular weight with conversion and low PDIs. A bimodal molecular weight distribution was observed for PMAU at low conversions courtesy of hybrid behavior between living and conventional free radical polymerization. This effect was more pronounced when a PMAG macroRAFT agent was chain extended with MAU, however, in both cases, good control was attained once the main RAFT equilibrium was established. A stability study on PMAU found that its hydrolysis is diffusion controlled, and is accelerated at physiological pH compared with neutral conditions. Self‐assembly of four block copolymers with increasing hydrophobic (PMAU) block lengths produced micelles, which demonstrated an increased tendency to form rods as the PMAU block length increased. Interestingly, none of the block copolymers were surface‐active. An initial assessment of PMAU's ability to bind the nucleoside adenosine through base pairing was highly promising, with DSC measurements indicating that adenosine is fully miscible in the PMAU matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1706–1723, 2009 相似文献
8.
Rachel K. O'Reilly Maisie J. Joralemon Craig J. Hawker Karen L. Wooley 《Journal of polymer science. Part A, Polymer chemistry》2006,44(17):5203-5217
Block copolymer micelles and shell cross-linked nanoparticles (SCKs) presenting Click-reactive functional groups on their surfaces were prepared using two separate synthetic strategies, each employing functionalized initiators for the controlled radical polymerization of acrylate and styrenic monomers to afford amphiphilic block copolymers bearing an alkynyl or azido group at the α-terminus. The first route for the synthesis of the azide-functionalized nanostructures was achieved via sequential nitroxide-mediated radical polymerization (NMP) of tert-butyl acrylate and styrene, originating from a benzylic chloride-functionalized initiator, followed by deprotection of the acrylic acids, supramolecular assembly of the block copolymer in water and conversion of the benzylic chloride to a benzylic azide. In contrast, the second strategy utilized an alkynyl-functionalized reversible addition fragmentation transfer (RAFT) agent directly for the RAFT-based sequential polymerization of tetrahydropyran acrylate and styrene, followed by selective cleavage of the tetrahydropyran esters to give the α-alkynyl-functionalized block copolymers. These Click-functionalized polymers, with the functionality located at the hydrophilic polymer termini, were then self-assembled using a mixed-micelle methodology to afford surface-functionalized “Clickable” micelles in aqueous solutions. The optimum degree of incorporation of the Click-functionalized polymers was investigated and determined to be ca. 25%, which allowed for the synthesis of well-defined surface-functionalized nanoparticles after cross-linking selectively throughout the shell layer using established amidation chemistry. Functionalization of the chain ends was shown to be an efficient process under standard Click conditions and the resulting functional groups revealed a more “solution-like” environment when compared to the functional group randomly inserted into the hydrophilic shell layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5203–5217, 2006 相似文献
9.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(4):399-411
Stimuli‐responsive block–random copolymers are very useful “smart” materials as their switching behavior can be tuned by simply adjusting the composition of the random copolymer block. Because of that, we synthesized double thermoresponsive poly(N‐acryloylpyrrolidine)‐block‐poly(N‐acryloylpiperidine‐co‐N‐acryloylpyrrolidine) (PAPy‐b‐P(APi‐co‐APy)) copolymers via reversible addition fragmentation chain transfer (RAFT) polymerization and investigated their temperature‐induced self‐assembly in aqueous solution. By varying the APi/APy ratio in the random copolymer block, its phase transition temperature (PTT1) can indeed be precisely adjusted while the temperature‐induced collapse upon heating leads to a fully reversible well‐defined micellization. By making the two blocks compositionally similar to more than 60%, the polymers' mechanistic thermoresponsiveness can furthermore be changed from block‐like to rather gradient‐like behavior. This means the micellization onset at PTT1 and the corona collapse at the PTT of the more hydrophilic pure PAPy block (PTT2) overlap resulting in one single broad transition. This work thus contributes to the detailed understanding of design, synthesis and mechanistic behavior of tailored “on‐demand” switchable materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 399–411 相似文献
10.
Lizhi Hong Zhenghe Zhang Yuan Zhang Weian Zhang 《Journal of polymer science. Part A, Polymer chemistry》2014,52(18):2669-2683
A novel POSS‐containing methacrylate monomer (HEMAPOSS) was fabricated by extending the side chain between polyhedral oligomeric silsesquioxane (POSS) unit and methacrylate group, which can efficiently decrease the steric hindrance in free‐radical polymerization of POSS‐methacrylate monomer. POSS‐containing homopolymers (PHEMAPOSS) with a higher degree of polymerization (DP) can be prepared using HEMAPOSS monomer via reversible addition–fragmentation chain transfer (RAFT) polymerization. PHEMAPOSS was further used as the macro‐RAFT agent to construct a series of amphiphilic POSS‐containing poly(N, N‐dimethylaminoethyl methacrylate) diblock copolymers, PHEMAPOSS‐b‐PDMAEMA. PHEMAPOSS‐b‐PDMAEMA block copolymers can self‐assemble into a plethora of morphologies ranging from irregular assembled aggregates to core‐shell spheres and further from complex spheres (pearl‐necklace‐liked structure) to large compound vesicles. The thermo‐ and pH‐responsive behaviors of the micelles were also investigated by dynamic laser scattering, UV spectroscopy, SEM, and TEM. The results reveal the reversible transition of the assembled morphologies from spherical micelles to complex micelles was realized through acid‐base control. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2669‐2683 相似文献
11.
Xiaodong Zhou Peihong Ni Zhangqing Yu Feng Zhang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(3):471-484
Poly(fluoroalkyl mathacrylate)‐block‐poly(butyl methacrylate) diblock copolymer latices were synthesized by a two‐step process. In the first step, a homopolymer end‐capped with a dithiobenzoyl group [poly(fluoroalkyl mathacrylate) (PFAMA) or poly(butyl methacrylate) (PBMA)] was prepared in bulk via reversible addition–fragmentation chain transfer (RAFT) polymerization with 2‐cyanoprop‐2‐yl dithiobenzoate as a RAFT agent. In the second step, the homopolymer chain‐transfer agent (macro‐CTA) was dissolved in the second monomer, mixed with a water phase containing a surfactant, and then ultrasonicated to form a miniemulsion. Subsequently, the RAFT‐mediated miniemulsion polymerization of the second monomer (butyl methacrylate or fluoroalkyl mathacrylate) was carried out in the presence of the first block macro‐CTA. The influence of the polymerization sequence of the two kinds of monomers on the colloidal stability and molecular weight distribution was investigated. Gel permeation chromatography analyses and particle size results indicated that using the PFAMA macro‐CTA as the first block was better than using the PBMA RAFT agent with respect to the colloidal stability and the narrow molecular weight distribution of the F‐copolymer latices. The F‐copolymers were characterized with 1H NMR, 19F NMR, and Fourier transform infrared spectroscopy. Comparing the contact angle of a water droplet on a thin film formed by the fluorinated copolymer with that of PBMA, we found that for the diblock copolymers containing a fluorinated block, the surface energy decreased greatly, and the hydrophobicity increased. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 471–484, 2007 相似文献
12.
Multiblock polymers were prepared by combination of ATRP (CuBr/tris[(2‐pyridyl)methyl]amine) and RAFT polymerization involving cyclic trithiocarbonate (CTTC). In the combined polymerization system, the ATRP was introduced as constant radical source, CTTC underwent ring‐opening polymerization, and the incorporated trithiocarbonate moieties derived from CTTCs performed as RAFT agent. Through the integrated process, multiblock polymers containing predictable average block number together with controlled molecular weight of the blocks were prepared by one‐pot polymerization. The average block number of polymer was controlled by concentration ratio of CTTC to alkyl halide in ARTP, and the molecular weight of block were well regulated by concentration of CTTC and monomer conversion. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2425–2429, 2010 相似文献
13.
Maria Demetriou Theodora Krasia‐Christoforou 《Journal of polymer science. Part A, Polymer chemistry》2008,46(16):5442-5451
Four well‐defined diblock copolymers and one statistical copolymer based on lauryl methacrylate (LauMA) and 2‐(acetoacetoxy)ethyl methacrylate (AEMA) were prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The polymers were characterized in terms of molecular weights, polydispersity indices (ranging between 1.12 and 1.23) and compositions by size exclusion chromatography and 1H NMR spectroscopy, respectively. The preparation of the block copolymers was accomplished following a two‐step methodology: First, well‐defined LauMA homopolymers were prepared by RAFT using cumyl dithiobenzoate as the chain transfer agent (CTA). Kinetic studies revealed that the polymerization of LauMA followed first‐order kinetics demonstrating the “livingness” of the RAFT process. The pLauMAs were subsequently used as macro‐CTA for the polymerization of AEMA. The glass transition (Tg) and decomposition temperatures (ranging between 200 and 300 °C) of the copolymers were determined using differential scanning calorimetry and thermal gravimetric analysis, respectively. The Tgs of the LauMA homopolymers were found to be around ?53 °C. Block copolymers exhibited two Tgs suggesting microphase separation in the bulk whereas the statistical copolymer presented a single Tg as expected. Furthermore, the micellization behavior of pLauMA‐b‐pAEMA block copolymers was investigated in n‐hexane, a selective solvent for the LauMA block, using dynamic light scattering. pLauMA‐b‐pAEMA block copolymers formed spherical micelles in dilute hexane solutions with hydrodynamic diameters ranging between 30 and 50 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5442–5451, 2008 相似文献
14.
Cangjie Yang Yuanming Deng Birong Zeng Conghui Yuan Min Chen Weiang Luo Jie Liu Yiting Xu Lizong Dai 《Journal of polymer science. Part A, Polymer chemistry》2012,50(20):4300-4310
In this article, the amphiphilic block copolymers containing polyhedral oligomeric silsesquioxane (POSS), namely PMAPOSS‐b‐PAA and PMAPOSS‐b‐P(AA‐co‐St), were synthesized consecutively by reversible addition–fragmentation chain transfer and selective hydrolysis, and characterized by 1H NMR, 13C NMR, Fourier transform infrared spectroscopy and gel permeation chromatography. In the presence of the nearly gradient styrene distribution along the hydrophilic block with a feed molar ratio of tert‐butyl acrylate (tBA) to St being 10/1, patterned core‐corona nanoparticles (NPs) were formed from the mixture of good/selective solvents (THF/water) by a simple evaporation process at room temperature. With the extending of the co‐block length, the self‐assembled NPs exhibited phase separation behavior of spheres‐dispersed, onion‐like and onion‐cluster hierarchical structures in turn. However, while a change in the feed molar ratio occurred, it resulted in the formation of typical core‐shell micelles (20/1, tBA/St) and disordered particles (5/1, tBA/St), respectively. Furthermore, the self‐assembly behavior of PMAPOSS‐b‐P(AA‐co‐St) in DMF was investigated, which showed that it could perform a mixture morphology of well‐dispersive sphere micelles and large aggregate of micelles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
15.
Yuanming Deng Julien Bernard Pierre Alcouffe Jocelyne Galy Lizong Dai Jean‐François Gérard 《Journal of polymer science. Part A, Polymer chemistry》2011,49(20):4343-4352
A series of well‐defined hybrid block copolymers PMACyPOSS‐b‐PMMA and PMAiBuPOSS‐b‐PMMA exhibiting high POSS weight contents have been synthesized by RAFT polymerization and further studied as modifiers for epoxy thermosets based on diglycidyl ether of bisphenol A. The hybrid block copolymers self‐assembled within the epoxy precursors into micelles possessing an inorganic core and a PMMA corona. Thanks to the presence of the PMMA blocks that remain miscible until the end of the reaction, curing of the resulting blends afforded nanostructured hybrid organic/inorganic networks with well‐dispersed inorganic‐rich nanodomains with diameters on the order of 20 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
16.
Yan Shi Zhifeng Fu Wantai Yang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):2069-2075
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐alt‐p‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006 相似文献
17.
Athanasios Skandalis Stergios Pispas 《Journal of polymer science. Part A, Polymer chemistry》2017,55(1):155-163
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophobic poly (lauryl methacrylate), (PLMA) block and one hydrophilic poly (oligo ethylene glycol methacrylate) (POEGMA) block are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR and FT‐IR spectroscopy, and DSC. The PLMA‐b‐POEGMA amphiphilic block copolymers self‐assemble in nanosized complex nanostructures resembling compound micelles when inserted in aqueous media, as supported by light scattering and TEM measurements. The encapsulation and release of the model, hydrophobic, nonsteroidal anti‐inflammatory drug indomethacin in the polymeric micelles is also investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 155–163 相似文献
18.
Mariliz Achilleos Demetris Kafouris Simon J. Holder Theodora Krasia‐Christoforou 《Journal of polymer science. Part A, Polymer chemistry》2012,50(20):4215-4222
A new, simple, and cost‐effective approach toward the development of well‐defined optically active diblock copolymers based on methacrylate monomers is described for the first time. Starting from the low‐cost optically active (S)‐(?)‐2‐methyl‐1‐butanol, a new optically active methacrylic monomer, namely, (S)‐(+)‐2‐methyl‐1‐butyl methacrylate [(S)‐(+)‐MBuMA], was synthesized. Reversible addition fragmentation chain transfer polymerization was then used for preparing well‐defined poly[(S)‐(+)‐MBuMA] homopolymers and water‐soluble diblock copolymers based on [(S)‐(+)‐MBuMA] and the hydrophilic and ionizable monomer 2‐(dimethyl amino)ethyl methacrylate (DMAEMA). The respective homopolymers and diblock copolymers were characterized in terms of their molecular weights, polydispersity indices, and compositions by size exclusion chromatography and 1H NMR spectroscopy. Polarimetry measurements were used to determine the specific optical rotations of these systems. The structural and compositional characteristics of micellar nanostructures possessing an optically active core generated by p((S)‐(+)‐MBuMA)‐b‐p(DMAEMA) chains characterized by predetermined molecular characteristics may be easily tuned to match biological constructs. Consequently, the aggregation behavior of the p[(S)‐(+)‐MBuMA]‐b‐p[DMAEMA] diblock copolymers was investigated in aqueous media by means of dynamic light scattering and atomic force microscopy, which revealed the formation of micelles in neutral and acidified aqueous solutions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
19.
Zhishen Ge Shizhong Luo Shiyong Liu 《Journal of polymer science. Part A, Polymer chemistry》2006,44(4):1357-1371
This article describes the syntheses and solution behavior of model amphiphilic dendritic–linear diblock copolymers that self‐assemble in aqueous solutions into micelles with thermoresponsive shells. The investigated materials are constructed of poly(benzyl ether) monodendrons of the second generation ([G‐2]) or third generation ([G‐3]) and linear poly(N‐isopropylacrylamide) (PNIPAM). [G‐2]‐PNIPAM and [G‐3]‐PNIPAM dendritic–linear diblock copolymers have been prepared by reversible addition–fragmentation transfer (RAFT) polymerizations of N‐isopropylacrylamide with a [G‐2]‐ or [G‐3]‐based RAFT agent, respectively. The critical micelle concentration (cmc) of [G‐3]‐PNIPAM220, determined by surface tensiometry, is 6.3 × 10?6 g/mL, whereas [G‐2]‐PNIPAM235 has a cmc of 1.0 × 10?5 g/mL. Transmission electron microscopy results indicate the presence of spherical micelles in aqueous solutions. The thermoresponsive conformational changes of PNIPAM chains located at the shell of the dendritic–linear diblock copolymer micelles have been thoroughly investigated with a combination of dynamic and static laser light scattering and excimer fluorescence. The thermoresponsive collapse of the PNIPAM shell is a two‐stage process; the first one occurs gradually in the temperature range of 20–29 °C, which is much lower than the lower critical solution temperature of linear PNIPAM homopolymer, followed by the second process, in which the main collapse of PNIPAM chains takes place in the narrow temperature range of 29–31 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1357–1371, 2006 相似文献
20.
Alp H. Alidedeoglu Adam W. York Charles L. McCormick Sarah E. Morgan 《Journal of polymer science. Part A, Polymer chemistry》2009,47(20):5405-5415
We report the direct homopolymerization and block copolymerization of 2‐aminoethyl methacrylate (AEMA) via aqueous reversible addition‐fragmentation chain transfer (RAFT) polymerization. The controlled “living” polymerization of AEMA was carried out directly in aqueous buffer using 4‐cyanopentanoic acid dithiobenzoate (CTP) as the chain transfer agent (CTA), and 2,2′‐azobis(2‐imidazolinylpropane) dihydrochloride (VA‐044) as the initiator at 50 °C. The controlled “living” character of the polymerization was verified with pseudo‐first order kinetic plots, a linear increase of the molecular weight with conversion, and low polydispersities (PDIs) (<1.2). In addition, well‐defined copolymers of poly(AEMA‐b‐HPMA) have been prepared through chain extension of poly(AEMA) macroCTA with N‐(2‐hydroxypropyl)methacrylamide (HPMA) in water. It is shown that the macroCTA can be extended in a controlled fashion resulting in near monodisperse block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5405–5415, 2009 相似文献