首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Domain decomposition for multiscale PDEs   总被引:3,自引:1,他引:2  
We consider additive Schwarz domain decomposition preconditioners for piecewise linear finite element approximations of elliptic PDEs with highly variable coefficients. In contrast to standard analyses, we do not assume that the coefficients can be resolved by a coarse mesh. This situation arises often in practice, for example in the computation of flows in heterogeneous porous media, in both the deterministic and (Monte–Carlo simulated) stochastic cases. We consider preconditioners which combine local solves on general overlapping subdomains together with a global solve on a general coarse space of functions on a coarse grid. We perform a new analysis of the preconditioned matrix, which shows rather explicitly how its condition number depends on the variable coefficient in the PDE as well as on the coarse mesh and overlap parameters. The classical estimates for this preconditioner with linear coarsening guarantee good conditioning only when the coefficient varies mildly inside the coarse grid elements. By contrast, our new results show that, with a good choice of subdomains and coarse space basis functions, the preconditioner can still be robust even for large coefficient variation inside domains, when the classical method fails to be robust. In particular our estimates prove very precisely the previously made empirical observation that the use of low-energy coarse spaces can lead to robust preconditioners. We go on to consider coarse spaces constructed from multiscale finite elements and prove that preconditioners using this type of coarsening lead to robust preconditioners for a variety of binary (i.e., two-scale) media model problems. Moreover numerical experiments show that the new preconditioner has greatly improved performance over standard preconditioners even in the random coefficient case. We show also how the analysis extends in a straightforward way to multiplicative versions of the Schwarz method. We would like to thank Bill McLean for very useful discussions concerning this work. We would also like to thank Maksymilian Dryja for helping us to improve the result in Theorem 4.3.  相似文献   

2.
Three domain decomposition methods for saddle point problems are introduced and compared. The first two are block‐diagonal and block‐triangular preconditioners with diagonal blocks approximated by an overlapping Schwarz technique with positive definite local and coarse problems. The third is an overlapping Schwarz preconditioner based on indefinite local and coarse problems. Numerical experiments show that while all three methods are numerically scalable, the last method is almost always the most efficient. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
We analyze two‐level overlapping Schwarz domain decomposition methods for vector‐valued piecewise linear finite element discretizations of the PDE system of linear elasticity. The focus of our study lies in the application to compressible, particle‐reinforced composites in 3D with large jumps in their material coefficients. We present coefficient‐explicit bounds for the condition number of the two‐level additive Schwarz preconditioned linear system. Thereby, we do not require that the coefficients are resolved by the coarse mesh. The bounds show a dependence of the condition number on the energy of the coarse basis functions, the coarse mesh, and the overlap parameters, as well as the coefficient variation. Similar estimates have been developed for scalar elliptic PDEs by Graham et al. 1 The coarse spaces to which they apply here are assumed to contain the rigid body modes and can be considered as generalizations of the space of piecewise linear vector‐valued functions on a coarse triangulation. The developed estimates provide a concept for the construction of coarse spaces, which can lead to preconditioners that are robust with respect to high contrasts in Young's modulus and the Poisson ratio of the underlying composite. To confirm the sharpness of the theoretical findings, we present numerical results in 3D using vector‐valued linear, multiscale finite element and energy‐minimizing coarse spaces. The theory is not restricted to the isotropic (Lamé) case, extends to the full‐tensor case, and allows applications to multiphase materials with anisotropic constituents in two and three spatial dimensions. However, the bounds will depend on the ratio of largest to smallest eigenvalue of the elasticity tensor.  相似文献   

4.
We develop a quasi‐two‐level, coarse‐mesh‐free characteristic nonoverlapping domain decomposition method for unsteady‐state convection‐diffusion partial differential equations in multidimensional spaces. The development of the domain decomposition method is carried out by utilizing an additive Schwarz domain decomposition preconditioner, by using an Eulerian‐Lagrangian method for convection‐diffusion equations and by delicately choosing appropriate interface conditions that fully respect and utilize the hyperbolic nature of the governing equations. Numerical experiments are presented to illustrate the method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

5.
In this paper, we present a parallel Newton–Krylov–Schwarz (NKS)‐based non‐linearly implicit algorithm for the numerical solution of the unsteady non‐linear multimaterial radiation diffusion problem in two‐dimensional space. A robust solver technology is required for handling the high non‐linearity and large jumps in material coefficients typically associated with simulations of radiation diffusion phenomena. We show numerically that NKS converges well even with rather large inflow flux boundary conditions. We observe that the approach is non‐linearly scalable, but not linearly scalable in terms of iteration numbers. However, CPU time is more important than the iteration numbers, and our numerical experiments show that the algorithm is CPU‐time‐scalable even without a coarse space given that the mesh is fine enough. This makes the algorithm potentially more attractive than multilevel methods, especially on unstructured grids, where course grids are often not easy to construct. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The finite element (FE) solution of geotechnical elasticity problems leads to the solution of a large system of linear equations. For solving the system, we use the preconditioned conjugate gradient (PCG) method with two-level additive Schwarz preconditioner. The preconditioning is realised in parallel. A coarse space is usually constructed using an aggregation technique. If the finite element spaces for coarse and fine problems on structural grids are fully compatible, relations between elements of matrices of the coarse and fine problems can be derived. By generalization of these formulae, we obtain an overlapping aggregation technique for the construction of a coarse space with smoothed basis functions. The numerical tests are presented at the end of the paper.  相似文献   

7.
We construct a class of quasi‐Toeplitz splitting iteration methods to solve the two‐sided unsteady space‐fractional diffusion equations with variable coefficients. By making full use of the structural characteristics of the coefficient matrix, the method only requires computational costs of O(n log n) with n denoting the number of degrees of freedom. We develop an appropriate circulant matrix to replace the Toeplitz matrix as a preconditioner. We discuss the spectral properties of the quasi‐circulant splitting preconditioned matrix. Numerical comparisons with existing approaches show that the present method is both effective and efficient when being used as matrix splitting preconditioners for Krylov subspace iteration methods.  相似文献   

8.
In this paper, we develop several two‐grid methods for the Nédélec edge finite element approximation of the time‐harmonic Maxwell equations. We first present a two‐grid method that uses a coarse space to solve the original problem and then use a fine space to solve a corresponding symmetric positive definite problem. Then, we present two types of iterative two‐grid methods, one is to add the kernel of the curl ‐operator in the fine space to a coarse mesh space to solve the original problem and the other is to use an inner iterative method for dealing with the kernel of the curl ‐operator in the fine space and the coarse space, separately. We provide the error estimates for the first two methods and present numerical experiments to show the efficiency of our methods.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Mohammed Seaïd 《PAMM》2004,4(1):494-495
We propose a robust multigrid solver for the isotropic transport equation in three space dimensions. Discrete‐ordinates and Galerkin method are used for angle and space discretizations, respectively. The fully discrete problem is formulated as a compact linear system of algebraic equations with a dense iterate matrix. Using a hierarchy of nested meshes our multigrid algorithm employes the Atkinson‐Brakhage approximate inverse as a smoother while a Krylov subspace method is used to solve the coarse problem. Numerical results and comparisons are shown for a transport problem with thermal source. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

11.
Balancing Neumann‐Neumann methods are introduced and studied for incompressible Stokes equations discretized with mixed finite or spectral elements with discontinuous pressures. After decomposing the original domain of the problem into nonoverlapping subdomains, the interior unknowns, which are the interior velocity component and all except the constant‐pressure component, of each subdomain problem are implicitly eliminated. The resulting saddle point Schur complement is solved with a Krylov space method with a balancing Neumann‐Neumann preconditioner based on the solution of a coarse Stokes problem with a few degrees of freedom per subdomain and on the solution of local Stokes problems with natural and essential boundary conditions on the subdomains. This preconditioner is of hybrid form in which the coarse problem is treated multiplicatively while the local problems are treated additively. The condition number of the preconditioned operator is independent of the number of subdomains and is bounded from above by the product of the square of the logarithm of the local number of unknowns in each subdomain and a factor that depends on the inverse of the inf‐sup constants of the discrete problem and of the coarse subproblem. Numerical results show that the method is quite fast; they are also fully consistent with the theory. © 2002 John Wiley & Sons, Inc.  相似文献   

12.
In a previous paper a preconditioning strategy based on overlapping domain decomposition was applied to the Galerkin approximation of elliptic partial differential equations on the sphere. In this paper the methods are extended to more general pseudodifferential equations on the sphere, using as before spherical radial basis functions for the approximation space, and again preconditioning the ill-conditioned linear systems of the Galerkin approximation by the additive Schwarz method. Numerical results are presented for the case of hypersingular and weakly singular integral operators on the sphere \mathbbS2{\mathbb{S}^2} .  相似文献   

13.
We consider a scalar advection-diffusion problem and a recently proposed discontinuous Galerkin approximation, which employs discontinuous finite element spaces and suitable bilinear forms containing interface terms that ensure consistency. For the corresponding sparse, nonsymmetric linear system, we propose and study an additive, two-level overlapping Schwarz preconditioner, consisting of a coarse problem on a coarse triangulation and local solvers associated to a family of subdomains. This is a generalization of the corresponding overlapping method for approximations on continuous finite element spaces. Related to the lack of continuity of our approximation spaces, some interesting new features arise in our generalization, which have no analog in the conforming case. We prove an upper bound for the number of iterations obtained by using this preconditioner with GMRES, which is independent of the number of degrees of freedom of the original problem and the number of subdomains. The performance of the method is illustrated by several numerical experiments for different test problems using linear finite elements in two dimensions.

  相似文献   


14.
We propose a nonintrusive reduced‐order modeling method based on the notion of space‐time‐parameter proper orthogonal decomposition (POD) for approximating the solution of nonlinear parametrized time‐dependent partial differential equations. A two‐level POD method is introduced for constructing spatial and temporal basis functions with special properties such that the reduced‐order model satisfies the boundary and initial conditions by construction. A radial basis function approximation method is used to estimate the undetermined coefficients in the reduced‐order model without resorting to Galerkin projection. This nonintrusive approach enables the application of our approach to general problems with complicated nonlinearity terms. Numerical studies are presented for the parametrized Burgers' equation and a parametrized convection‐reaction‐diffusion problem. We demonstrate that our approach leads to reduced‐order models that accurately capture the behavior of the field variables as a function of the spatial coordinates, the parameter vector and time. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

15.
We study a multilevel Schwarz preconditioned Newton-Krylov algorithm to solve the Poisson-Boltzmann equation with applications in multi-particle colloidal simulation. The smoothed aggregation-type coarse mesh space is introduced in collaboration with the one-level Schwarz method as a composite preconditioner for accelerating the convergence of a Krylov subspace method for solving the Jacobian system at each Newton step. The important feature of the proposed solution algorithm is that the geometric mesh information needed for constructing the multilevel preconditioner is the same as the one-level Schwarz method on the fine mesh. Other components, such as the definition of the coarse mesh, all the mesh transfer operators, and the coarse mesh problem, are taken care of by the Trillinos/ML packages of the Sandia National Laboratories in the United States. After algorithmic parameter tuning, we show that the proposed smoothed aggregation multilevel Newton-Krylov-Schwarz (NKS) algorithm numerically outperforms than smoothed aggregation multigrid method and one-level version of the NKS algorithm with satisfactory parallel performances up to a few thousand cores. Besides, we investigate how the electrostatic forces between particles for the separation distance depend on the radius of spherical colloidal particles and valence ratios of cation and anion in a cubic system.  相似文献   

16.
We propose a multiscale multilevel Monte Carlo(MsMLMC) method to solve multiscale elliptic PDEs with random coefficients in the multi-query setting. Our method consists of offline and online stages. In the offline stage,we construct a small number of reduced basis functions within each coarse grid block, which can then be used to approximate the multiscale finite element basis functions. In the online stage, we can obtain the multiscale finite element basis very efficiently on a coarse grid by using the pre-computed multiscale basis.The MsMLMC method can be applied to multiscale RPDE starting with a relatively coarse grid, without requiring the coarsest grid to resolve the smallestscale of the solution. We have performed complexity analysis and shown that the MsMLMC offers considerable savings in solving multiscale elliptic PDEs with random coefficients. Moreover, we provide convergence analysis of the proposed method. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed method for several multiscale stochastic problems without scale separation.  相似文献   

17.
In this article, we present a new multiscale discontinuous Petrov–Galerkin method (MsDPGM) for multiscale elliptic problems. This method utilizes the classical oversampling multiscale basis in the framework of a Petrov–Galerkin version of the discontinuous Galerkin method, allowing us to better cope with multiscale features in the solution. MsDPGM takes advantage of the multiscale Petrov–Galerkin method (MsPGM) and the discontinuous Galerkin method (DGM). It can eliminate the resonance error completely and decrease the computational costs of assembling the stiffness matrix, thus, allowing for more efficient solution algorithms. On the basis of a new H2 norm error estimate between the multiscale solution and the homogenized solution with the first‐order corrector, we give a detailed convergence analysis of the MsDPGM under the assumption of periodic oscillating coefficients. We also investigate a multiscale discontinuous Galerkin method (MsDGM) whose bilinear form is the same as that of the DGM but the approximation space is constructed from the classical oversampling multiscale basis functions. This method has not been analyzed theoretically or numerically in the literature yet. Numerical experiments are carried out on the multiscale elliptic problems with periodic and randomly generated log‐normal coefficients. Their results demonstrate the efficiency of the proposed method.  相似文献   

18.
A finite element variational multiscale method based on two local Gauss integrations is applied to solve numerically the time‐dependent incompressible Navier–Stokes equations. A significant feature of the method is that the definition of the stabilization term is derived via two local Guass integrations at element level, making it more efficient than the usual projection‐based variational multiscale methods. It is computationally cheap and gives an accurate approximation to the quantities sought. Based on backward Euler and Crank–Nicolson schemes for temporal discretization, we derive error bounds of the fully discrete solution which are first and second order in time, respectively. Numerical tests are also given to verify the theoretical predictions and demonstrate the effectiveness of the proposed method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

19.
Two‐grid variational multiscale (VMS) algorithms for the incompressible Navier‐Stokes equations with friction boundary conditions are presented in this article. First, one‐grid VMS algorithm is used to solve this problem and some error estimates are derived. Then, two‐grid VMS algorithms are proposed and analyzed. The algorithms consist of nonlinear problem on coarse grid and linearized problem (Stokes problem or Oseen problem) on fine grid. Moreover, the stability and convergence of the present algorithms are established. Finally, Numerical results are shown to confirm the theoretical analysis. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 546–569, 2017  相似文献   

20.
Numerical Algorithms - A new coarse space for a two-level overlapping Schwarz algorithm is presented for problems posed in three dimensions in the space H(curl, Ω). Previous studies for these...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号