首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kinetic study of the independent and simultaneous photoinitiated cationic polymerization of a number of epoxide and vinyl (enol) ether monomer pairs was conducted. The results show that, although no appreciable copolymerization takes place, these monomers undergo complex interactions with one another. These interactions are highly dependent on the epoxide monomer employed. In all cases, the rate of epoxide ring-opening polymerization is accelerated, whereas that of the vinyl ether is depressed. When highly reactive cycloaliphatic epoxides are subjected to photoinitiated cationic polymerization in the presence of vinyl ethers, the two polymerizations proceed in a sequential fashion, with the vinyl ether polymerization taking place after the epoxide polymerization is essentially complete. A mechanism involving an equilibration between alkoxy-carbenium and oxonium ions has been proposed to explain the results. In addition, the free-radical-induced decomposition of the diaryliodonium salt photoinitiator also takes place, leading to a decrease in the induction period. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4007–4018, 1999  相似文献   

2.
A kinetic study was conducted of the independent photoinitiated cationic polymerization of a number of epoxide monomers and mixtures of these monomers with N‐vinylcarbazole. The results show that these two different classes of monomers undergo complex synergistic interactions with one another during polymerization. It was demonstrated that N‐vinylcarbazole as well as other carbazoles are efficient photosensitizers for the photolysis of both diaryliodonium and triarylsulfonium salt photoinitiators. In the presence of large amounts of N‐vinylcarbazole, the rates of the cationic ring‐opening photopolymerization of epoxides are markedly accelerated. This effect has been ascribed to a photoinitiated free‐radical chain reaction that results in the oxidation of monomeric and polymeric N‐vinylcarbazole radicals by the onium salt photoinitiators to generate cations. These cations can initiate the ring‐opening polymerization of the epoxides, leading to the production of copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3697–3709, 2000  相似文献   

3.
Photoinitiated cationic polymerization of mono‐ and bifunctional epoxy monomers, namely cyclohexeneoxide (CHO), 4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexanecarboxylate (EEC), respectively by using sulphonium salts in the presence of hydroxylbutyl vinyl ether (HBVE) was studied. The real‐time FTIR spectroscopic, gel content determination, and thermal characterization studies revealed that both hydroxyl and vinyl ether functionalities of HBVE take part in the polymerization. During the polymerization, HBVE has the ability to react via both active chain end (ACE) and activated monomer mechanisms through its hydroxyl and vinyl ether functionalities, respectively. Thus, more efficient curing was observed with the addition of HBVE into EEC‐containing formulations. It was also demonstrated that HBVE is effective in facilitating the photoinduced crosslinking of monofunctional epoxy monomer, CHO in the absence of a conventional crosslinker. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4914–4920, 2007  相似文献   

4.
Synthesis of poly(styrene‐block‐tetrahydrofuran) (PSt‐b‐PTHF) block copolymer on the surfaces of intercalated and exfoliated silicate (clay) layers by mechanistic transformation was described. First, the polystyrene/montmorillonite (PSt/MMT) nanocomposite was synthesized by in situ atom transfer radical polymerization (ATRP) from initiator moieties immobilized within the silicate galleries of the clay particles. Transmission electron microscopy (TEM) analysis showed the existence of both intercalated and exfoliated structures in the nanocomposite. Then, the PSt‐b‐PTHF/MMT nanocomposite was prepared by mechanistic transformation from ATRP to cationic ring opening polymerization (CROP). The TGA thermogram of the PSt‐b‐PTHF/MMT nanocomposite has two decomposition stages corresponding to PTHF and PSt segments. All nanocomposites exhibit enhanced thermal stabilities compared with the virgin polymer segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2190–2197, 2009  相似文献   

5.
New hybrid vinyl monomers with both cationic- and radical-polymerizable vinyl groups were synthesized by the reaction of bis[1(chloromethyl)-2-(vinyloxy)ethyl]terephthalate ( 3 ) with unsaturated carboxylic acids using 1,8-diazabicyclo[5.4.0]-undecene-7 (DBU) as a base. The reaction of 3 with methacrylic acid 4a was carried out using DBU in DMSO at 70°C for 24 h to give an 86% yield of the hybrid vinyl monomer ( 5a ). Polycondensation of 3 with unsaturated dicarboxylic acids was also performed using DBU to give hybrid vinyl oligomers with radical polymerizable C (DOUBLE BOND) C groups (VR) in the main chain and cationic polymerizable vinyl ether moieties (VC) on the side chain. The photopolymerization of these hybrid vinyl compounds proceeded smoothly in bulk using either a cationic photoinitiator such as a sulfonium salt or a radical photoinitiator such as acyl phosphine oxide under UV irradiation. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
The addition of sulfides has a marked effect on the rates of onium salt induced photoinitiated cationic ring‐opening polymerizations of epoxide monomers. Various behaviors have been observed that depend on the structure of the sulfide. Dialkyl sulfides strongly inhibit the photopolymerizations of these monomers, whereas diaryl sulfides have a retarding effect on the photopolymerizations. Real‐time infrared spectroscopy and optical pyrometry have been employed as analytical methods to probe the kinetic effects of the addition of a variety of sulfides on cationic epoxide ring‐opening photopolymerizations. A mechanism is proposed that involves the formation of sulfonium salts as intermediates. The observations made in this study have important implications for cationic photopolymerizations in general and for photoinitiated cationic ring‐opening polymerizations of epoxides in particular. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2504–2519, 2005  相似文献   

7.
Propagation in the cationic ring‐opening polymerization of cyclic ethers involves nucleophilic attack of oxygen atoms from the monomer molecules on the cationic growing species (oxonium ions). Such a mechanism is known as the active chain‐end mechanism. If hydroxyl groups containing compounds are present in the system, oxygen atoms of HO? groups may compete with cyclic ether oxygen atoms of monomer molecules in reaction with oxonium ions. At the proper conditions, this reaction may dominate, and propagation may proceed by the activated monomer mechanism, that is, by subsequent addition of protonated monomer molecules to HO? terminated macromolecules. Both mechanisms may contribute to the propagation in the cationic polymerization of monomers containing both functions (i.e., cyclic ether group and hydroxyl groups) within the same molecule. In this article, the mechanism of polymerization of three‐ and four‐membered cyclic ethers containing hydroxymethyl substituents is discussed in terms of competition between two possible mechanisms of propagation that governs the structure of the products—branched polyethers containing multiple terminal hydroxymethyl groups. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 457–468, 2003  相似文献   

8.
A new class of polybenzoxazine/montmorillonite (PBz/MMT) nanocomposites has been prepared by the in situ polymerization of the typical fluid benzoxazine monomer, 3‐pentyl‐5‐ol‐3,4‐dihydro‐1,3‐benzoxazine, with intercalated benzoxazine MMT clay. A pyridine‐substituted benzoxazine was first synthesized and quaternized by 11‐bromo‐1‐undecanol and then used for ion exchange reaction with sodium ions in MMT to obtain intercalated benzoxazine clay. Finally, this organomodified clay was dispersed in the fluid benzoxazine monomers at different loading degrees to conduct the in situ thermal ring‐opening polymerization. Polymerization through the interlayer galleries of the clay led to the PBz/MMT nanocomposite formation. The morphologies of the nanocomposites were investigated by both X‐ray diffraction and transmission electron microscopic techniques, which suggested the partially exfoliated/intercalated structures in the PBz matrix. Results of thermogravimetric analysis confirmed that the thermal stability and char yield of PBz nanocomposites increased with the increase of clay content. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Poly(ethylene oxide) (PEO)–clay (montmorillonite, hectorite, and laponite) nanocomposites were prepared by a melting intercalation procedure induced by microwave irradiation. The influence of parameters such as the time of irradiation, power, amount and relative ratio of the reagents, and relative humidity was investigated. X-ray diffraction, differential scanning calorimetry, elemental microanalysis, Fourier transform infrared, and scanning electron microscopy techniques were applied to characterize the resulting nanocomposites. Techniques involving impedance spectroscopy, thermoelectric power, and electrical polarization in the solid state were used to characterize the electrical properties of the nanocomposites. The electrical behavior of these PEO–silicate nanocomposites, including those containing an excess of alkaline metal salts in comparison with that of similar systems prepared by alternative procedures such as direct intercalation from polymer solutions or melting intercalation, was also examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3249–3263, 2003  相似文献   

10.
Thermally stable organically modified clays based on 1,3‐didecyl‐2‐methylimidazolium (IM2C10) and 1‐hexadecyl‐2,3‐dimethyl‐imidazolium (IMC16) were used to prepare poly(ethylene naphthalate) (PEN)/clay nanocomposites via a melt intercalation process. The clay dispersion in the resulting hybrids was studied by a combination of X‐ray diffraction, polarizing optical microscopy, and transmission electron microscopy. It was found that IMC16 provided better compatibility between the PEN matrix and the clay than IM2C10, as evidenced by some intercalation of polymer achieved in the PEN/IMC16‐MMT hybrid. The effects of clay on the crystal structure of PEN were investigated. It was found that both pristine MMT and imidazolium‐treated MMT enhanced the formation of the β‐crystal phase under melt crystallization at 200 °C. At 180 °C, however, the imidazolium‐treated MMT was found to favor the α‐crystal form instead. The difference in clay‐induced polymorphism behavior was attributed to conformational changes experienced by the clay modifiers as the crystallization temperature changes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1040–1049, 2006  相似文献   

11.
12.
Poly(epsilon-caprolactone)/clay nanocomposites via “click” chemistry   总被引:1,自引:0,他引:1  
Poly(epsilon-caprolactone)/clay nanocomposites were prepared by copper(I) catalyzed azide/alkyne cycloaddition (CuAAC) “click” reaction. In this method, ring-opening polymerization of epsilon-caprolactone using propargyl alcohol as the initiator has been performed to produce alkyne-functionalized PCL and the obtained polymers were subsequently attached to azide-modified clay layers by a CuAAC “click” reaction. The exfoliated polymer/clay nanocomposites were characterized by X-ray diffraction spectroscopy, thermogravimetric analysis and transmission electron microscopy.  相似文献   

13.
The cationic ring‐opening polymerization of 3,3‐bis(hydroxymethyl)oxetane (BHMO) and the copolymerization of BHMO with 3‐ethyl‐3‐(hydroxymethyl)oxetane (EOX) were studied. Medium molecular weight polymers (number‐average molecular weight ≈ 2 × 103) were obtained in bulk polymerization. Poly[3,3‐bis(hydroxymethyl)oxetane], as highly insoluble, was only characterized by gel permeation chromatography and NMR methods in the esterified form. Copolymers of BHMO and EOX that were slightly soluble in organic solvents were characterized in more detail. In a copolymerization from a 1:1 mixture, the comonomers were consumed at equal rates. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis confirmed that a random 1:1 copolymer was formed. 13C NMR analysis indicated that in contrast to previously described homopolymers of EOX in which the degree of branching was limited, the homopolymers of BHMO were highly branched. This pattern was preserved in the copolymers; EOX units were predominantly linear, whereas BHMO units were predominantly branched. The copolymerization of BHMO with EOX provides, therefore, a route to multihydroxyl branched‐polyethers with various degrees of branching containing ? OH groups exclusively as ≡C? CH2? OH units. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1991–2002, 2002  相似文献   

14.
Poly(trimethylene terephthalate) (PTT)/montmorillonite (MMT) nanocomposites were prepared by the solution intercalation method. Two different kinds of clay were organomodified with an intercalation agent of cetyltrimetylammonium chloride (CMC). X‐ray diffraction (XRD) indicated that the layers of MMT were intercalated by CMC, and interlayer spacing was a function of the cationic exchange capacity of clay. The XRD studies demonstrated that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay. From the results of differential scanning calorimetric analysis, it was found that clay behaves as a nucleating agent and enhances the crystallization rate of PTT. The maximum enhancement of the crystallization rate for the nanocomposites was observed in nanocomposites containing about 1 wt % organoclay with a range of 1–15 wt %. From thermogravimetric analysis, we found that the thermal stability of the nanocomposites was enhanced by the addition of 1–10 wt % organoclay. According to transmission electron microscopy, the organoclay particle was highly dispersed in the PTT matrix without a large agglomeration of particles for a low organoclay content (5 wt %). However, an agglomerated structure did form in the PTT matrix at a 15 wt % organoclay content. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2902–2910, 2003  相似文献   

15.
Based on a recent report [J. Polym. Sci. Part A. Polym. Chem. 2013 , 51, 47–58] whereby we demonstrated the synthesis of polystyrene nanoparticles by miniemulsion polymerization stabilized by graphene oxide (GO) nanosheets as sole surfactant, we hereby report the synthesis of hybrid polymer nanoparticles of several members of the (meth)acrylate family as well as the cross‐linker divinylbenzene via the same approach. The nature of the resultant emulsion is strongly linked to the polarity of the monomer used; monomers with a relatively small polar component (based on Hansen solubility parameters) such as lauryl methacrylate and benzyl methacrylate, in addition to styrene, generate stable emulsions that can be effectively polymerized. Particularly polar monomers (e.g., methyl acrylate and methyl methacrylate) formed kinetically stable emulsions in the presence of GO, however rapid coagulation occurred during polymerization. Electron microscopy analysis reveals the formation of polymer nanoparticles with size distribution between 200 and 1000 nm with roughened surface morphologies, indicative of GO sheets adsorbed at the interface. The results of this work demonstrate the applicability of this synthetic route for specific monomers in the preparation of novel graphene‐based polymeric materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5153–5162  相似文献   

16.
A further study on mechanical properties and morphology evolution of high density poly (ethylene)/ethylene‐vinyl acetate/and organically‐modified montmorillonite (HDPE/EVA/OMT) nanocomposites exposed to gamma‐rays (0–200 kGy) has been achieved. The results showed that nanocomposites have superior irradiation‐resistant properties to HDPE/EVA blend in mechanical properties. A transmission electron microscope study verified that a face‐face ordered nanostructure had been induced by gamma‐rays. The aim of this paper is to provide a possible mechanism on how the OMT influences the general properties of irradiated nanocomposites, based on the results of thermal, flammability and mechanical behavior. Three facts are postulated to be responsible for the mechanism. The first is the segregation of nano‐dispersed clay layers not only reduces polymer oxidation but prevents crosslinking reactions. The second is the nanostructure evolution induced by gamma‐rays, which may impart nanocomposites improved elasticity. The last is due to the Hofmann degradation, whose degraded products have opposite roles, accelerating polymer oxidation or promoting crosslinking reactions. These facts interact as well as compete with others. The properties of the nanocomposites strongly depended on the prevalent effects developing with increasing irradiation doses. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Polymer–silicate nanocomposites were synthesized with atom transfer radical polymerization (ATRP). An ATRP initiator, consisting of a quaternary ammonium salt moiety and a 2‐bromo‐2‐methyl propionate moiety, was intercalated into the interlayer spacings of the layered silicate. Subsequent ATRP of styrene, methyl methacrylate, or n‐butyl acrylate with Cu(I)X/N,N‐bis(2‐pyridiylmethyl) octadecylamine, Cu(I)X/N,N,N,N,N″‐pentamethyldiethylenetriamine, or Cu(I)X/1,1,4,7,10,10‐hexamethyltriethylenetetramine (X = Br or Cl) catalysts with the initiator‐modified silicate afforded homopolymers with predictable molecular weights and low polydispersities, both characteristics of living radical polymerization. The polystyrene nanocomposites contained both intercalated and exfoliated silicate structures, whereas the poly(methyl methacrylate) nanocomposites were significantly exfoliated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 916–924, 2004  相似文献   

18.
Preparation of nanocomposites of organo‐modified montmorillonites and the biodegradable poly(ester amide) derived from glycolic acid and 6‐aminohexanoic acid has been evaluated by the in situ polymerization technique. The reaction was based on the thermal polycondensation of sodium chloroacetylaminohexanoate, which has the formation of the sodium chloride salt as the driving force of the process. Polymerized samples were studied by means of X‐ray diffraction and transmission electron microscopy. The most dispersed structure was obtained by addition of C25A organoclay. Evaluation of thermal stability and crystallization behavior of these samples showed significant differences between the neat polymer and its nanocomposite with C25A. Isothermal and nonisothermal calorimetric analyses of the polymerization reaction revealed that the kinetics was highly influenced by the presence of the silicate particles. Crystallization of the polymer was observed to occur when the process was isothermally conducted at temperatures lower than 145 °C. In this case, dynamic FTIR spectra and WAXD profiles obtained with synchrotron radiation were essential to study the polymerization kinetics. Clay particles seemed to reduce chain mobility and the Arrhenius preexponential factor. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3616–3629, 2009  相似文献   

19.
Polyethylene–clay nanocomposites were synthesized by in situ polymerization with 2,6‐bis[1‐(2,6‐diisopropylphenylimino)ethyl] pyridine iron(II) dichloride supported on a modified montmorillonite clay pretreated with methylaluminoxane (MAO). The catalysts and the obtained nanocomposites were examined with wide‐angle X‐ray scattering. The exfoliation of the clay was further established by transmission electron microscopy. Upon the treatment of the clay with MAO, there was an increase in the d‐spacing of the clay galleries. No further increase in the d‐spacing of the galleries was observed with the iron catalyst supported on the MAO‐treated clay. The catalyst activity for ethylene polymerization was independent of the Al/Fe ratio. The exfoliation of the clay inside the polymer matrix depended on various parameters, such as the clay content, catalyst content, and Al/Fe ratio. The crystallinity percentage and crystallite size of the nanocomposites were affected by the degree of exfoliation of the clay. Moreover, when ethylene was polymerized with a mixture of the homogeneous iron(II) catalyst and clay, the degree of exfoliation was significantly lower than when the polymerization was performed with a preformed clay‐supported catalyst. This observation suggested that in the supported catalyst, at least some of the active centers resided within the galleries of the clay. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 304–318, 2005  相似文献   

20.
《先进技术聚合物》2018,29(6):1870-1874
In this study, we have for the first time demonstrated that palladium chloride (PdCl2) is an efficient catalyst for ring‐opening polymerization of cyclohexene oxide in a solvent‐free condition. The polymerization product was in atactic structure, and reaction conditions, such as reaction temperature, time, and catalyst amount, showed effects on polymerization conversion yield, turnover number, and number‐average molecular weight of the resulting poly(cyclohexene oxide). PdCl2 catalysis follows a cationic ring‐opening mechanism. The polymerization result is highly determined by the chemical structure of the monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号