首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
In this paper we propose a new WENO scheme, in which we use a central WENO [G. Capdeville, J. Comput. Phys. 227 (2008) 2977-3014] (CWENO) reconstruction combined with the smoothness indicators introduced in [R. Borges, M. Carmona, B. Costa, W. Sun Don, J. Comput. Phys. 227 (2008) 3191-3211] (IWENO). We use the central-upwind flux [A. Kurganov, S. Noelle, G. Petrova, SIAM J. Sci. Comp. 23 (2001) 707-740] which is simple, universal and efficient. For time integration we use the third order TVD Runge-Kutta scheme. The resulting scheme improves the convergence order at critical points of smooth parts of solution as well as decrease the dissipation near discontinuities. Numerical experiments of the new scheme for one and two-dimensional problems are reported. The results demonstrates that the proposed scheme is superior to the original CWENO and IWENO schemes.  相似文献   

2.
We have developed an efficient hybrid technique for solving nonlinear conservation laws. Previous hybrid techniques have been accurate but lacked the property of conservation, whereas our technique is both accurate and conservative. To achieve this, we superimposed all possible stencils for ENO polynomials and weighted the value from each cells in a way that depends on the numerical solution. Computational efficiency relies on switching from central data where the exact solution is smooth to noncentral data near discontinuities. We prove the theoretical consistency of the technique and discuss the connection with ENO and WENO methods. We introduce time dependency by combining our method with Runge‐Kutta schemes that are TVD preserving. We have verified our technique experimentally by solving a suite of test problems with convex and non‐convex flux functions taken from the literature. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2009  相似文献   

3.
4.
We present a class of high‐order weighted essentially nonoscillatory (WENO) reconstructions based on relaxation approximation of hyperbolic systems of conservation laws. The main advantage of combining the WENO schemes with relaxation approximation is the fact that the presented schemes avoid solution of the Riemann problems due to the relaxation approach and high‐resolution is obtained by applying the WENO approach. The emphasis is on a fifth‐order scheme and its performance for solving a wide class of systems of conservation laws. To show the effectiveness of these methods, we present numerical results for different test problems on multidimensional hyperbolic systems of conservation laws. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

5.
In this article we present a high resolution hybrid central finite difference—WENO scheme for the solution of conservation laws, in particular, those related to shock–turbulence interaction problems. A sixth order central finite difference scheme is conjugated with a fifth order weighted essentially non-oscillatory WENO scheme in a grid-based adaptive way. High order multi-resolution analysis is used to detect the high gradients regions of the numerical solution in order to capture the shocks with the WENO scheme while the smooth regions are computed with the more efficient and accurate central finite difference scheme. The application of high order filtering to mitigate the dispersion error of central finite difference schemes is also discussed. Numerical experiments with the 1D compressible Euler equations are shown.  相似文献   

6.
An adaptive method is developed for solving one-dimensional systems of hyperbolic conservation laws, which combines the rezoning approach with the finite volume weighted essentially non-oscillatory (WENO) scheme. An a posteriori error estimate, used to equidistribute the mesh, is obtained from the differences between respective numerical solutions of 5th-order WENO (WENO5) and 3rd-order ENO (ENO3) schemes. The number of grids can be adaptively readjusted based on the solution structure. For higher efficiency, mesh readjustment is performed every few time steps rather than every time step. In addition, a high order conservative interpolation is used to compute the physical solutions on the new mesh from old mesh based on the finite volume ENO reconstruction. Extensive examples suggest that this adaptive method exhibits more accurate resolution of discontinuities for a similar level of computational time comparing with that on a uniform mesh.  相似文献   

7.
New first- and high-order centred methods for conservation lawsare presented. Convenient TVD conditions for constructing centredTVD schemes are then formulated and some useful results areproved. Two families of centred TVD schemes are constructedand extended to nonlinear systems. Some numerical results arealso presented.  相似文献   

8.
In this work a first order accurate semi-conservative composite scheme is presented for hyperbolic conservation laws. The idea is to consider the non-conservative form of conservation law and utilize the explicit wave propagation direction to construct semi-conservative upwind scheme. This method captures the shock waves exactly with less numerical dissipation but generates unphysical rarefaction shocks in case of expansion waves with sonic points. It shows less dissipative nature of constructed scheme. In order to overcome it, we use the strategy of composite schemes. A very simple criteria based on wave speed direction is given to decide the iterations. The proposed method is applied to a variety of test problems and numerical results show accurate shock capturing and higher resolution for rarefaction fan.  相似文献   

9.
In this paper we first briefly review the very high order ADER methods for solving hyperbolic conservation laws. ADER methods use high order polynomial reconstruction of the solution and upwind fluxes as the building block. They use a first order upwind Godunov and the upwind second order weighted average (WAF) fluxes. As well known the upwind methods are more accurate than central schemes. However, the superior accuracy of the ADER upwind schemes comes at a cost, one must solve exactly or approximately the Riemann problems (RP). Conventional Riemann solvers are usually complex and are not available for many hyperbolic problems of practical interest. In this paper we propose to use two central fluxes, instead of upwind fluxes, as the building block in ADER scheme. These are the monotone first order Lax-Friedrich (LXF) and the third order TVD flux. The resulting schemes are called central ADER schemes. Accuracy of the new schemes is established. Numerical implementations of the new schemes are carried out on the scalar conservation laws with a linear flux, nonlinear convex flux and non-convex flux. The results demonstrate that the proposed scheme, with LXF flux, is comparable to those using first and second order upwind fluxes while the scheme, with third order TVD flux, is superior to those using upwind fluxes. When compared with the state of art ADER schemes, our central ADER schemes are faster, more accurate, Riemann solver free, very simple to implement and need less computer memory. A way to extend these schemes to general systems of nonlinear hyperbolic conservation laws in one and two dimensions is presented.  相似文献   

10.
In this work, we present a monotone first‐order weighted (FORWE) method for scalar conservation laws using a variational formulation. We prove theoretical properties as consistency, monotonicity, and convergence of the proposed scheme for the one‐dimensional (1D) Cauchy problem. These convergence results are extended to multidimensional scalar conservation laws by a dimensional splitting technique. For the validation of the FORWE method, we consider some standard bench‐mark tests of bidimensional and 1D conservation law equations. Finally, we analyze the accuracy of the method with L1 and L error estimates. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
We extend the multiscale finite element viscosity method for hyperbolic conservation laws developed in terms of hierarchical finite element bases to a (pre‐orthogonal spline‐)wavelet basis. Depending on an appropriate error criterion, the multiscale framework allows for a controlled adaptive resolution of discontinuities of the solution. The nonlinearity in the weak form is treated by solving a least‐squares data fitting problem. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

12.
This article presents a new type of second‐order scheme for solving the system of Euler equations, which combines the Runge‐Kutta discontinuous Galerkin (DG) finite element method and the kinetic flux vector splitting (KFVS) scheme. We first discretize the Euler equations in space with the DG method and then the resulting system from the method‐of‐lines approach will be discretized using a Runge‐Kutta method. Finally, a second‐order KFVS method is used to construct the numerical flux. The proposed scheme preserves the main advantages of the DG finite element method including its flexibility in handling irregular solution domains and in parallelization. The efficiency and effectiveness of the proposed method are illustrated by several numerical examples in one‐ and two‐dimensional spaces. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

13.
In this article, up to tenth‐order finite difference schemes are proposed to solve the generalized Burgers–Huxley equation. The schemes based on high‐order differences are presented using Taylor series expansion. To establish the numerical solutions of the corresponding equation, the high‐order schemes in space and a fourth‐order Runge‐Kutta scheme in time have been combined. Numerical experiments have been conducted to demonstrate the high‐order accuracy of the current algorithms with relatively minimal computational effort. The results showed that use of the present approaches in the simulation is very applicable for the solution of the generalized Burgers–Huxley equation. The current results are also seen to be more accurate than some results given in the literature. The proposed algorithms are seen to be very good alternatives to existing approaches for such physical applications. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1313‐1326, 2011  相似文献   

14.
15.
This paper presents a new numerical strategy for computing the nonclassical weak solutions of scalar conservation laws which fail to be genuinely nonlinear. We concentrate on the typical situation of concave–convex and convex–concave flux functions. In such situations the so‐called nonclassical shocks, violating the classical Oleinik entropy criterion and selected by a prescribed kinetic relation, naturally arise in the resolution of the Riemann problem. Enforcing the kinetic relation from a numerical point of view is known to be a crucial but challenging issue. By means of an algorithm made of two steps, namely an Equilibrium step and a Transport step, we show how to force the validity of the kinetic relation at the discrete level. The proposed strategy is based on the use of a numerical flux function and random numbers. We prove that the resulting scheme enjoys important consistency properties. Numerous numerical evidences illustrate the validity of our approach. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

16.
This article is concerned with the convergence of the level‐set algorithm introduced by Aslam (J Comput Phys 167 (2001), 413–438) for tracking the discontinuities in scalar conservation laws in the case of linear or strictly convex flux function. The numerical method is deduced by the level‐set representation of the entropy solution: the zero of a level‐set function is used as an indicator of the discontinuity curves and two auxiliary states, which are assumed continuous through the discontinuities, are introduced. We rewrite the numerical level‐set algorithm as a procedure consisting of three big steps: (a) initialization, (b) evolution, and (c) reconstruction. In (a), we choose an entropy admissible level‐set representation of the initial condition. In (b), for each iteration step, we solve an uncoupled system of three equations and select the entropy admissible level‐set representation of the solution profile at the end of the time iteration. In (c), we reconstruct the entropy solution using the level‐set representation. We prove the convergence of the numerical solution to the entropy solution in for every , using ‐weak bounded variation (BV) estimates and a cell entropy inequality. In addition, some numerical examples focused on the elementary wave interaction are presented. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1310–1343, 2015  相似文献   

17.
18.
Traditionally, explicit numerical algorithms have not been used with stiff ordinary differential equations (ODEs) due to their stability. Implicit schemes are usually very expensive when used to solve systems of ODEs with very large dimension. Stabilized Runge‐Kutta methods (also called Runge–Kutta–Chebyshev methods) were proposed to try to avoid these difficulties. The Runge–Kutta methods are explicit methods with extended stability domains, usually along the negative real axis. They can easily be applied to large problem classes with low memory demand, they do not require algebra routines or the solution of large and complicated systems of nonlinear equations, and they are especially suited for discretizations using the method of lines of two and three dimensional parabolic partial differential equations. In Martín‐Vaquero and Janssen [Comput Phys Commun 180 (2009), 1802–1810], we showed that previous codes based on stabilized Runge–Kutta algorithms have some difficulties in solving problems with very large eigenvalues and we derived a new code, SERK2, based on sixth‐order polynomials. Here, we develop a new method based on second‐order polynomials with up to 250 stages and good stability properties. These methods are efficient numerical integrators of very stiff ODEs. Numerical experiments with both smooth and nonsmooth data support the efficiency and accuracy of the new algorithms when compared to other well‐known second‐order methods such as RKC and ROCK2. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

19.
In this paper we propose a family of well-balanced semi-implicit numerical schemes for hyperbolic conservation and balance laws. The basic idea of the proposed schemes lies in the combination of the finite volume WENO discretization with Roe’s solver and the strong stability preserving (SSP) time integration methods, which ensure the stability properties of the considered schemes [S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001) 89-112]. While standard WENO schemes typically use explicit time integration methods, in this paper we are combining WENO spatial discretization with optimal SSP singly diagonally implicit (SDIRK) methods developed in [L. Ferracina, M.N. Spijker, Strong stability of singly diagonally implicit Runge-Kutta methods, Appl. Numer. Math. 58 (2008) 1675-1686]. In this way the implicit WENO numerical schemes are obtained. In order to reduce the computational effort, the implicit part of the numerical scheme is linearized in time by taking into account the complete WENO reconstruction procedure. With the proposed linearization the new semi-implicit finite volume WENO schemes are designed.A detailed numerical investigation of the proposed numerical schemes is presented in the paper. More precisely, schemes are tested on one-dimensional linear scalar equation and on non-linear conservation law systems. Furthermore, well-balanced semi-implicit WENO schemes for balance laws with geometrical source terms are defined. Such schemes are then applied to the open channel flow equations. We prove that the defined numerical schemes maintain steady state solution of still water. The application of the new schemes to different open channel flow examples is shown.  相似文献   

20.
In the present paper, a hybrid filter is introduced for high accurate numerical simulation of shock‐containing flows. The fourth‐order compact finite difference scheme is used for the spatial discretization and the third‐order Runge–Kutta scheme is used for the time integration. After each time‐step, the hybrid filter is applied on the results. The filter is composed of a linear sixth‐order filter and the dissipative part of a fifth‐order weighted essentially nonoscillatory scheme (WENO5). The classic WENO5 scheme and the WENO5 scheme with adaptive order (WENO5‐AO) are used to form the hybrid filter. Using a shock‐detecting sensor, the hybrid filter reduces to the linear sixth‐order filter in smooth regions for damping high frequency waves and reduces to the WENO5 filter at shocks in order to eliminate unwanted oscillations produced by the nondissipative spatial discretization method. The filter performance and accuracy of the results are examined through several test cases including the advection, Euler and Navier–Stokes equations. The results are compared with that of a hybrid second‐order filter and also that of the WENO5 and WENO5‐AO schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号