首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Mixtures are expected to show anomalous behavior in their viscoelastic properties close to a critical point. In this study, the reheological behavior of blends of polystyrene and poly (vinyl methyl ether) below, close to, and above the phase separation temperature Ts was investigated. Rheological measurements were carried out at three different compositions in the melt. Below and far from Ts, a satisfactory superposition of the storage and loss moduli G' and G″ was observed at all temperatures and frequencies. Close to Ts deviations were observed for G' at low frequencies (the so-called terminal zone). Above Ts G″ values was still observed over the whole range of frequencies and temperatures. The deviations observed for G' near Ts can be interpreted as due to the presence of significant concentration fluctuations. Plots of log (G'/G″2) as a function of temperature were shown to be sensitive to this anomalous behavior.  相似文献   

2.
We demonstrate that real‐time laser interference microscopy can be used to directly observe the dynamics of film formation and phase separation processes for a bar‐spread polystyrene/poly(methyl methacrylate) blend. The ability to dynamically image laser interference patterns allows compete drying curves and polymer content to be determined throughout the film formation process. The polymer content at which phase separation structure first is observed in the interference micrograph sequence is in good agreement with calculated spinodal curves. Morphology evolution proceeds from phase separation onward via coarsening and coalescence to arrive at the final domain structure. In comparison, spin coating the same polymer blend results in structure evolution being quenched further from equilibrium due to the faster drying rate. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 985–992  相似文献   

3.
Samples of low-molecular-weight polystyrene (PS) in poly(methyl methacrylate) (PMMA) were prepared by first dissolving PS in methyl methacrylate monomer and then polymerizing the monomer. Forty-three specimens of varying number-average molecular weight (2100–49,000) and composition (5–40 wt %) of PS were prepared, and the surface morphology and phase relationships studied by scanning electron microscopy. Four distinct types of phase relationships were observed: (i) a single phase consisting of PS dissolved in PMMA; (ii) PS dispersed in PMMA; (iii) PMMA dispersed in PS; and (iv) regions of PS dispersed in PMMA coexisting with regions of PMMA dispersed in PS. Values of the size and population density of the dispersed particles are reported. Finally, the size and distribution of the dispersed particles and the various types of phase relationships are discussed in terms of the ternary polystyrene/poly(methyl methacrylate)/methyl methacrylate phase diagram.  相似文献   

4.
Upon crystalline solidification of one component in a homogeneously molten polymer blend, composition profiles develop outside (i.e., in the rest melt) and behind (i.e., within the spherulites) the crystal growth front. The present article is devoted to the detailed verification and the interpretation of these distributions and their temporal development inside growing spherulites. To this end, the energy dispersive X‐ray emission (EDX) of suitable elements has been recorded locally resolved in a scanning electron microscope and evaluated correspondingly. The investigations were performed at the melt homogeneous blend of poly(vinylidene fluoride) (PVDF) as crystallizing and poly(methyl methacrylate) (PMMA) as steadily amorphous component. If the spherulites are not volume filling, the mean PMMA content 〈?PMMA〉 inside the PVDF spherulites is for all blends about 0.2 below the starting composition. ?PMMA increases however slightly from the center of a spherulite to its border. That increase reflects the PMMA concentration in front of the spherulite surface, which increases likewise with time, and is clearly above the initial composition. There is at the spherulite surface, consequently, a remarkable jump in composition from the spherulite internal to its amorphous surroundings. It may amount up to 0.5. With volume filling spherulites, a slight variation of the composition from the center of a spherulite to its border is observed, too. This proves that also at these conditions composition profiles develop in the spherulite's surroundings. They remain however so weak that they do not inhibit crystallization even in its later stages. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 338–346, 2006  相似文献   

5.
Poly(methyl methacrylate) microgels covered with poly(hydroxyethyl methacrylate) thin layer was dispersed in poly(vinyl alcohol) matrix. Homogeneous and regular arrangement of the microgel particles was suggested by Bragg diffraction for the films prepared by varying the PVA/microgel ratio (from 6/4 to 3/7 (w/w)). It was proved that the regular arrangement and connection of the microgels by seeded polymerization in poly(vinyl alcohol) were possible. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
The effect of the presence of different amounts of block copolymers [polystyrene-block-poly(methyl methacrylate)] on the morphology of polystyrene/poly (methyl methacrylate) composite latex particles was investigated. The block copolymers were produced in situ by controlled radical polymerization (CRP) through the addition of the second monomer to a seed prepared by miniemulsion polymerization with a certain amount of a CRP agent. With an increase in the amounts of the block copolymers, the particle morphology changed from a hemisphere morphology (for a latex without block copolymers, i.e., without the use of a CRP agent during the polymerization) to clear core–shell morphologies as a result of decreasing polymer–polymer interfacial tension © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2484–2493, 2007  相似文献   

7.
Oscillatory shear rheometry data for a miscible blend of 20 wt % poly(vinylidene fluoride) (PVDF) in poly(methyl methacrylate) (PMMA) shows breakdown of time–temperature superposition for this blend. A comparison between glass transition temperature which PMMA chains sense in the blend and effective glass transition temperature of this component indicates that, the Lodge–McLeish model can describe terminal dynamics of PMMA. In addition, terminal dynamics of PVDF chains in the blend is similar to that of its pure state in agreement with the mentioned model. At segmental level, dynamic mechanical thermal analysis of four wholly amorphous blends suggests that cooperativity of molecular motions decreases upon addition of 30 and 40 wt % PVDF to PMMA. This behavior has been confirmed via calculation of degree of fragility which presumably is attributed to strong tendency of PVDF chains to self‐association rather than inter‐association with PMMA chains according to the FTIR results. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2860–2870, 2007  相似文献   

8.
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   

9.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

10.
Blends of glycidyl methacrylate (GMA)/methyl methacrylate (MMA) copolymers with poly (vinylidene fluoride) (PVDF) were found to be miscible when the GMA content of the copolymer is 35.7 wt % or less. The miscible blends did not phase separate upon heating prior to thermal decomposition. The melting point depression method, based on both the Flory-Huggins theory and the equation of state theory of Sanchez-Lacombe, was used to evaluate interaction parameters for each pair. The magnitude of these parameters appears to be much larger than interaction energies evaluated by other methods. Possible reasons for this are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The miscibility, morphology, and thermal properties of poly(vinyl chloride) (PVC) blends with different concentrations of poly(methyl methacylate) (PMMA) have been studied. The interaction between the phases was studied by FTIR and by measuring the glass transition temperature (Tg) of the blends using differential scanning calorimetry. Distribution of the phases at different compositions was studied through scanning electron microscopy. The FTIR and SEM results show little interaction and gross phase separation. The thermogravimetric studies on these blends were carried out under inert atmosphere from ambient to 800 °C at different heating rates varying from 2.5 to 20 °C/min. The thermal decomposition temperatures of the first and second stage of degradation in PVC in the presence of PMMA were higher than the pure. The stabilization effect on PVC was found most significant with 10 wt% PMMA content in the PVC matrix. These results agree with the isothermal degradation studies using dehydrochlorination and UV-vis spectroscopic results carried out on these blends. Using multiple heating rate kinetics the activation energies of the degradation process in PVC and its blends have been reported.  相似文献   

12.
This article reports the results of confocal fluorescence microscopy studies of shear‐induced coalescence in binary blends of poly(2‐ethylhexyl methacrylate) (PEHMA; 90 wt %) and poly(butyl methacrylate) (PBMA; 10 wt %). We prepared the blends by casting a mixture of latex dispersions of the components onto a substrate and allowing the film to dry under ambient conditions. The initial morphology of the film was a dispersion of 120‐nm PBMA spheres in a continuous PEHMA matrix. One‐fifth of the PBMA particles were labeled with anthracene, the emission of which we observed with confocal microscopy. The blends were sheared in a parallel‐plate rheometer at 80 and 100 °C for 1 and 10 h. Careful image analysis allowed us to estimate the mean size of the dispersed phase and the width of the size distribution. The results were compared with the theoretical limits of Wu and Taylor. After 10 h of shearing, the mean particle size decreased and the particle distribution became narrower in comparison with the results obtained after 1 h of shearing. We explain this result by inferring that before the sample reached steady‐state morphology, its rate of coalescence was greater than the rate of particle breakup. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2317–2332, 2001  相似文献   

13.
Deuterium solid echo line shapes were measured on deuterated poly(ethylene oxide) (d4PEO) in a blend with protonated poly(methyl methacrylate) to characterize chain dynamics of this component in the blend. Line shapes were observed as a function of temperature from 183 to 243 K and echo delay times from 10 to 100 μs on a blend containing 20 wt % d4PEO. The line shapes and the associated relative intensities were quantitatively interpreted in terms of segmental motion and libration. The results of the interpretation are compared to an earlier study of deuterium spin‐lattice relaxation times over the temperature range of 313 to 413 K. A combined interpretation of both sets of data is developed based on bimodal distribution of correlation times that are separated by about 2 orders of magnitude in time. The faster mode is 30% of the correlation function with a stretched exponent near one while the slower mode is characterized by an exponent of 0.5. The source of the bimodal character is not revealed by the line shape and relaxation data but is consistent with the presence of two glass transition temperatures in this miscible blend and anomalous translational diffusion of diethyl ether through the blend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2433–2444, 2005  相似文献   

14.
We have investigated the fluorescence emission spectra of pyrene and anthracene dyes covalently bonded to polystyrene (PS) upon phase separation from poly(vinyl methyl ether) (PVME). The specific chemical structure of the fluorescent labels is found to affect the measured phase separation temperature TS, with fluorophores covalently attached in closer proximity to the PS backbone identifying phase separation a few degrees earlier. The sharp increase in fluorescence intensity upon phase separation that occurs for all fluorophores with little change in spectral shape is consistent with a mechanism of static fluorescence quenching resulting from the specific interaction with a nearby quenching molecular unit. Based on recent work that has identified a weak hydrogen bond occurring between the aromatic hydrogens of PS and the ether oxygen of PVME, we believe a similar weak hydrogen bond is likely occurring between the PVME oxygen and the aromatic dyes providing a local (few nanometer) sensitivity to phase separation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

15.
The surface and interface morphologies of polystyrene (PS)/poly(methyl methacrylate) (PMMA) thin‐film blends and bilayers were investigated by means of atomic force microscopy (AFM) and X‐ray photoelectron spectroscopy. Spin‐coating a drop of a PS solution directly onto a PMMA bottom layer from a common solvent for both polymers yielded lateral domains that exhibited a well‐defined topographical structure. Two common solvents were used in this study. The structure of the films changed progressively as the concentration of the PS solution was varied. The formation of the blend morphology could be explained by the difference in the solubility of the two polymers in the solvent and the dewetting of PS‐rich domains from the PMMA‐rich phase. Films of the PS/PMMA blend and bilayer were annealed at temperatures above their glass‐transition temperatures for up to 70 h. All samples investigated with AFM were covered with PS droplets of various size distributions. Moreover, we investigated the evolution of the annealed PS/PMMA thin‐film blend and bilayer and gave a proper explanation for the formation of a relatively complicated interface inside a larger PS droplet. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 9–21, 2006  相似文献   

16.
Poly(phenylene sulfide) (PPS)/poly(butylene terephthalate) (PBT) (60/40 w/w) blend nanocomposites (PPS/PBTs) were prepared by direct melt compounding of PPS, PBT, and organoclay. The morphology and rheology of PPS/PBTs were investigated using scanning electron microscope and transmission electron microscope as well as parallel plate rheometer. The intercalated clay tactoids are selectively located in the continuous PBT phase due to their nice affinity. A novel morphology evolution of the immiscible blend matrices is observed with increase of clay loadings. Small addition of clay increases the discrete PPS spherulite domain size. With increasing loading levels, the PPS phase transform to the fibrous structure and finally, to the partial laminar structure at the high loading levels, in which shows a characteristic of large‐scaled phase separation. The presence of clay, however, does not impede the coalescence of the PPS phase because the phase size increases with increasing clay loadings. The elasticity and blend ratio of two matrices are proposed as the important roles on the morphological evolution. Moreover, the laminar structure of PPS phase is very sensitive to the steady shear flow and is easy to be broken down to spherulite droplet at the low shear rate. However, high shear level is likely to facilitate the coalescence of those PPS phase and finally to phase inversion, both contributing to increases of the dynamic modulus after steady shear flow. In conclusion, the morphology of the immiscible polymer blend nanocomposites depends strongly on both the clay loadings and shear history. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1265–1279, 2008  相似文献   

17.
We present results of the direct observation, in real‐space, of the phase separation of high molecular weight polystyrene and poly(methyl methacrylate) from ortho‐xylene using our newly developed technique of high speed stroboscopic interference microscopy. Taking a fixed concentration (3 wt % in o‐xylene) at a fixed composition (1:4 by weight) and by varying the rotational rate during the spin‐coating process, we are able to observe the formation of a range of phase separated bicontinuous morphologies of differing length‐scales. Importantly, we are able to show that the mechanism by which the final phase separated structure is formed is through domain coarsening when rich in solvent, before vitrification occurs and fixes the phase separated structure. The ability to directly observe morphological development offers a route toward controlling the length‐scale of the final morphology through process control and in situ feedback, from a single stock solution. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B Polym. Phys. 2013, 51, 875–881  相似文献   

18.
Thermal oxidation of poly(ethylene oxide) (PEO) and its blends with poly(methyl methacrylate) (PMMA) were studied using oxygen uptake measurements. The rates of oxidation and maximum oxygen uptake contents were reduced as the content of PMMA was increased in the blends. The results were indicative of a stabilizing effect by PMMA on the oxidation of PEO. The oxidation reaction at 140°C was stopped at various stages and PMMA was separated from PEO and its molecular weights were measured by gel permeation chromatography (GPC). The decrease in the number-average molecular weight of PMMA was larger as the content of PEO increased in the blends. The visual appearance of the films suggested that phase separation did not occur after thermal oxidation. The activation energy for the rates of oxidation in the blends was slightly increased compared to pure PEO. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
The low vapor pressure solvent 1‐chloropentane was used to directly spincast polystyrene (PS) films onto poly(methyl methacrylate) (PMMA) with smooth surfaces and sharp interfaces. Interface roughness after removal of the PS layer with cyclohexane was determined with scanning force microscopy to be <1 nm. Dynamic secondary mass spectroscopy revealed an interfacial width below the resolution limit of ~10 nm. Large area bilayers with smooth surfaces could be created. In addition, direct spincasting with 1‐chloropentane allows the production of thin PS films (<15 nm) and films of low molecular weight (<5 kDa) PS, all of which would be impossible to produce for this important model system by the traditional water‐transfer method. 1‐chloropentane was confirmed to be a sufficiently selective solvent for PS by measuring the Flory–Huggins χ parameters of 1‐chloropentane with PS and PMMA, respectively, with inverse gas chromatography. In the search for a suitable selective solvent, the authors have also examined the role of vapor pressure in spin casting smooth films over a wider molecular weight (4.3–190 kDa) and thickness range (~5–500 nm) than previously reported. Only solvents with low vapor pressure produced high quality PS films. Methylcyclohexene can also be used to produce excellent, directly cast PS/PMMA bilayers, but with a smaller molecular weight and thickness window compared with 1‐chloropentane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3234–3244, 2006  相似文献   

20.
The glass transition temperatures, Tg, of polystyrene, poly (vinyl chloride) and poly(methyI methacrylate) have been determined from gas chromatographic measurements using n-hexane, n-heptane, meta-xylene and para-xylene solvents. The glass transition temperatures were detected on the z-shaped retention diagrams which were produced from the plot of the logarithm of the specific retention volumes of the above-mentioned solvents against the reciprocal of temperature, i.e. log V g º vs. 1/T. The glass transition temperature is specified by the temperature where the slope of log V g º vs. 1/T changes abruptly. The observed glass transition temperature of polystyrene produced by this technique was found to be in good agreement with those produced by other techniques such as the differential scanning colorimeter. The industrial importance of the glass transition temperature, Tg, might be due to the dramatic changes in the physical properties of the polymer, such as hardness and elasticity, which take place in the vicinity of this temperature. However, perfectly crystalline polymers do not exhibit glass transitions, because their chains are incorporated in regions of three-dimensional order, called crystallites. Completely amorphous polymers and semi-crystalline polymers usually exhibit both glass transition and melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号