首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The approximation to the solution of large sparse symmetric linear problems arising from nonlinear systems of equations is considered. We are focusing herein on reusing information from previous processes while solving a succession of linear problems with a Conjugate Gradient algorithm. We present a new Rayleigh–Ritz preconditioner that is based on the Krylov subspaces and superconvergence properties, and consists of a suitable reuse of a given set of Ritz vectors. The relevance and the mathematical foundations of the current approach are detailed and the construction of the preconditioner is presented either for the unconstrained or the constrained problems. A corresponding practical preconditioner for iterative domain decomposition methods applied to nonlinear elasticity is addressed, and numerical validation is performed on a poorly-conditioned large-scale practical problem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
This paper is concerned with the efficient solution of the linear systems of equations that arise from an adaptive space-implicit time discretisation of the Black-Scholes equation. These nonsymmetric systems are very large and sparse, so an iterative method will usually be the method of choice. However, such a method may require a large number of iterations to converge, particularly when the timestep used is large (which is often the case towards the end of a simulation which uses adaptive timestepping). An appropriate preconditioner is therefore desirable. In this paper we show that a very simple multigrid algorithm with standard components works well as a preconditioner for these problems. We analyse the eigenvalue spectrum of the multigrid iteration matrix for uniform grid problems and illustrate the method’s efficiency in practice by considering the results of numerical experiments on both uniform grids and those which use adaptivity in space.  相似文献   

3.
We present a parallel preconditioned iterative solver for large sparse symmetric positive definite linear systems. The preconditioner is constructed as a proper combination of advanced preconditioning strategies. It can be formally seen as being of domain decomposition type with algebraically constructed overlap. Similar to the classical domain decomposition technique, inexact subdomain solvers are used, based on incomplete Cholesky factorization. The proper preconditioner is shown to be near optimal in minimizing the so‐called K‐condition number of the preconditioned matrix. The efficiency of both serial and parallel versions of the solution method is illustrated on a set of benchmark problems in linear elasticity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Interior point methods usually rely on iterative methods to solve the linear systems of large scale problems. The paper proposes a hybrid strategy using groups for the preconditioning of these iterative methods. The objective is to solve large scale linear programming problems more efficiently by a faster and robust computation of the preconditioner. In these problems, the coefficient matrix of the linear system becomes ill conditioned during the interior point iterations, causing numerical difficulties to find a solution, mainly with iterative methods. Therefore, the use of preconditioners is a mandatory requirement to achieve successful results. The paper proposes the use of a new columns ordering for the splitting preconditioner computation, exploring the sparsity of the original matrix and the concepts of groups. This new preconditioner is designed specially for the final interior point iterations; a hybrid approach with the controlled Cholesky factorization preconditioner is adopted. Case studies show that the proposed methodology reduces the computational times with the same quality of solutions when compared to previous reference approaches. Furthermore, the benefits are obtained while preserving the sparse structure of the systems. These results highlight the suitability of the proposed approach for large scale problems.  相似文献   

5.
An efficient preconditioner is developed for solving the Helmholtz problem in both high and low frequency (wavenumber) regimes. The preconditioner is based on hierarchical unknowns on nested grids, known as incremental unknowns (IU). The motivation for the IU preconditioner is provided by an eigenvalue analysis of a simplified Helmholtz problem. The performance of our preconditioner is tested on the iterative solution of two‐dimensional electromagnetic scattering problems. When compared with other well‐known methods, our technique is shown to often provide a better numerical efficacy and, most importantly, to be more robust. Moreover, for the best performance, the number of IU levels used in the preconditioner should be designed for the coarsest grid to have roughly two points per linear wavelength. This result is consistent with the conventional sampling criteria for wave phenomena in contrast with existing IU applications for solving the Laplace/Poisson problem, where the coarsest grid comprises just one interior point. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

6.
The computational time required by interior-point methods is often dominated by the solution of linear systems of equations. An efficient specialized interior-point algorithm for primal block-angular problems has been used to solve these systems by combining Cholesky factorizations for the block constraints and a conjugate gradient based on a power series preconditioner for the linking constraints. In some problems this power series preconditioner resulted to be inefficient on the last interior-point iterations, when the systems became ill-conditioned. In this work this approach is combined with a splitting preconditioner based on LU factorization, which works well for the last interior-point iterations. Computational results are provided for three classes of problems: multicommodity flows (oriented and nonoriented), minimum-distance controlled tabular adjustment for statistical data protection, and the minimum congestion problem. The results show that, in most cases, the hybrid preconditioner improves the performance and robustness of the interior-point solver. In particular, for some block-angular problems the solution time is reduced by a factor of 10.  相似文献   

7.
Solving large scale linear systems efficiently plays an important role in a petroleum reservoir simulator, and the key part is how to choose an effective parallel preconditioner. Properly choosing a good preconditioner has been beyond the pure algebraic field. An integrated preconditioner should include such components as physical background, characteristics of PDE mathematical model, nonlinear solving method, linear  相似文献   

8.
Solving large scale linear systems efficiently plays an important role in a petroleum reservoir simulator, and the key part is how to choose an effective parallel preconditioner. Properly choosing a good preconditioner has been beyond the pure algebraic field. An integrated preconditioner should include such components as physical background, characteristics of PDE mathematical model, nonlinear solving method, linear solving algorithm, domain decomposition and parallel computation. We first discuss some parallel preconditioning techniques, and then construct an integrated preconditioner, which is based on large scale distributed parallel processing, and reservoir simulation-oriented. The infrastructure of this preconditioner contains such famous preconditioning construction techniques as coarse grid correction, constraint residual correction and subspace projection correction. We essentially use multi-step means to integrate totally eight types of preconditioning components in order to give out the final preconditioner. Million-grid cell scale industrial reservoir data were tested on native high performance computers. Numerical statistics and analyses show that this preconditioner achieves satisfying parallel efficiency and acceleration effect.  相似文献   

9.
Coarse grid correction is a key ingredient in order to have scalable domain decomposition methods. In this Note we construct the coarse grid space using the low frequency modes of the subdomain DtN (Dirichlet–Neumann) maps, and apply the obtained two-level preconditioner to the linear system arising from an overlapping domain decomposition. Our method is suitable for the parallel implementation and its efficiency is demonstrated by numerical examples on problems with high heterogeneities.  相似文献   

10.
The large scale linear systems with M-matrices often appear in a wide variety of areas of physical,fluid dynamics and economic sciences.It is reported in[1]that the convergence rate of the IMGS method,with the preconditioner I S_α,is superior to that of the basic SOR iterative method for the M-matrix.This paper considers the preconditioned Jacobi(PJ)method with the preconditioner P=I S_α S_β,and proves theoretically that the convergence rate of the PJ method is better than that of the basic AOR method.Numerical examples are provided to illustrate the main results obtained.  相似文献   

11.
Implicit time‐step numerical integrators for ordinary and evolutionary partial differential equations need, at each step, the solution of linear algebraic equations that are unsymmetric and often large and sparse. Recently, a block preconditioner based on circulant approximations for the linear systems arising in the boundary value methods (BVMs) was introduced by the author. Here, some circulant approximations are compared and a further new type is considered. Numerical experiments are presented to check the effectiveness of the various approximations that can be used in the underlying block preconditioner. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract In this paper we study some nonoverlapping domain decomposition methods for solving a classof elliptic problems arising from composite materials and flows in porous media which contain many spatialscales. Our preconditioner differs from traditional domain decomposition preconditioners by using a coarsesolver which is adaptive to small scale heterogeneous features. While the convergence rate of traditional domaindecomposition algorithms using coarse solvers based on linear or polynomial interpolations may deteriorate inthe presence of rapid small scale oscillations or high aspect ratios, our preconditioner is applicable to multiple-scale problems without restrictive assumptions and seems to have a convergence rate nearly independent ofthe aspect ratio within the substructures. A rigorous convergence analysis based on the Schwarz framework iscarried out, and we demonstrate the efficiency and robustness of the proposed preconditioner through numericalexperiments which include problems with multipl  相似文献   

13.
<正>In this paper we study the computational performance of variants of an algebraic additive Schwarz preconditioner for the Schur complement for the solution of large sparse linear systems.In earlier works,the local Schur complements were computed exactly using a sparse direct solver.The robustness of the preconditioner comes at the price of this memory and time intensive computation that is the main bottleneck of the approach for tackling huge problems.In this work we investigate the use of sparse approximation of the dense local Schur complements.These approximations are computed using a partial incomplete LU factorization.Such a numerical calculation is the core of the multi-level incomplete factorization such as the one implemented in pARMS. The numerical and computing performance of the new numerical scheme is illustrated on a set of large 3D convection-diffusion problems;preliminary experiments on linear systems arising from structural mechanics are also reported.  相似文献   

14.
The paper introduces the sweeping preconditioner, which is highly efficient for iterative solutions of the variable‐coefficient Helmholtz equation including very‐high‐frequency problems. The first central idea of this novel approach is to construct an approximate factorization of the discretized Helmholtz equation by sweeping the domain layer by layer, starting from an absorbing layer or boundary condition. Given this specific order of factorization, the second central idea is to represent the intermediate matrices in the hierarchical matrix framework. In two dimensions, both the construction and the application of the preconditioners are of linear complexity. The generalized minimal residual method (GMRES) solver with the resulting preconditioner converges in an amazingly small number of iterations, which is essentially independent of the number of unknowns. This approach is also extended to the three‐dimensional case with some success. Numerical results are provided in both two and three dimensions to demonstrate the efficiency of this new approach. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
We propose a tensor structured preconditioner for the tensor train GMRES algorithm (or TT-GMRES for short) to approximate the solution of the all-at-once formulation of time-dependent fractional partial differential equations discretized in time by linear multistep formulas used in boundary value form and in space by finite volumes.Numerical experiments show that the proposed preconditioner is efficient for very large problems and is competitive, in particular with respect to the AMEn algorithm.  相似文献   

16.
Higher order finite element discretizations, although providing higher accuracy, are considered to be computationally expensive and of limited use for large‐scale problems. In this paper, we have developed an efficient iterative solver for solving large‐scale quadratic finite element problems. The proposed approach shares some common features with geometric multigrid methods but does not need structured grids to create the coarse problem. This leads to a robust method applicable to finite element problems discretized by unstructured meshes such as those from adaptive remeshing strategies. The method is based on specific properties of hierarchical quadratic bases. It can be combined with an algebraic multigrid (AMG) preconditioner or with other algebraic multilevel block factorizations. The algorithm can be accelerated by flexible Krylov subspace methods. We present some numerical results on the convection–diffusion and linear elasticity problems to illustrate the efficiency and the robustness of the presented algorithm. In these experiments, the performance of the proposed method is compared with that of an AMG preconditioner and other iterative solvers. Our approach requires less computing time and less memory storage. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Preconditioned Krylov subspace methods [7] are powerful tools for solving linear systems but sometimes they converge very slowly, and often after a long stagnation. A natural way to fix this is by enlarging the space in which the solution is computed at each iteration. Following this idea, we propose in this note two multipreconditioned algorithms: multipreconditioned orthomin and multipreconditioned biCG, which aim at solving general nonsingular linear systems in a small number of iterations. After describing the algorithms, we illustrate their behaviour on systems arising from the FETI domain decomposition method, where in order to enlarge the search space, each local component in the usual preconditioner is kept as a separate preconditioner.  相似文献   

18.
In this paper, a modified tangential frequency filtering decomposition (MTFFD) preconditioner is proposed. The optimal order of the modification and the optimal relaxation parameter is determined by Fourier analysis. With the choice of optimal order of modification, the Fourier results show that the condition number of the preconditioned matrix is O(h-\frac23){{\mathcal O}(h^{-\frac{2}{3}})}, and the spectrum distribution of the preconditioned matrix can be predicted by the Fourier results. The performance of MTFFD preconditioner is compared with tangential frequency filtering (TFFD) preconditioner on a variety of large sparse matrices arising from the discretization of PDEs with discontinuous coefficients. The numerical results show that the MTFFD preconditioner is much more efficient than the TFFD preconditioner.  相似文献   

19.
We present two new ways of preconditioning sequences of nonsymmetric linear systems in the special case where the implementation is matrix free. Both approaches are fully algebraic, they are based on the general updates of incomplete LU decompositions recently introduced in (SIAM J. Sci. Comput. 2007; 29 (5):1918–1941), and they may be directly embedded into nonlinear algebraic solvers. The first of the approaches uses a new model of partial matrix estimation to compute the updates. The second approach exploits separability of function components to apply the updated factorized preconditioner via function evaluations with the discretized operator. Experiments with matrix‐free implementations of test problems show that both new techniques offer useful, robust and black‐box solution strategies. In addition, they show that the new techniques are often more efficient in matrix‐free environment than either recomputing the preconditioner from scratch for every linear system of the sequence or than freezing the preconditioner throughout the whole sequence. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents parallel preconditioners and multigrid solvers for solving linear systems of equations arising from stochastic polynomial chaos formulations of the diffusion equation with random coefficients. These preconditioners and solvers are extensions of the preconditioner developed in an earlier paper for strongly coupled systems of elliptic partial differential equations that are norm equivalent to systems that can be factored into an algebraic coupling component and a diagonal differential component. The first preconditioner, which is applied to the norm equivalent system, is obtained by sparsifying the inverse of the algebraic coupling component. This sparsification leads to an efficient method for solving these systems at the large scale, even for problems with large statistical variations in the random coefficients. An extension of this preconditioner leads to stand‐alone multigrid methods that can be applied directly to the actual system rather than to the norm equivalent system. These multigrid methods exploit the algebraic/differential factorization of the norm equivalent systems to produce variable‐decoupled systems on the coarse levels. Moreover, the structure of these methods allows easy software implementation through re‐use of robust high‐performance software such as the Hypre library package. Two‐grid matrix bounds will be established, and numerical results will be given. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号