首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The existence result in linear elasticity obtained for the quasistatic problem of unilateral contact with regularized Coulomb friction is extented to a local friction problem. After discretizing the implicit variational inequality with respect to time, we have to solve a sequence of variational inequalities similar to the one of the static problem. If the friction coefficient is small enough, we show the existence of the incremental solution. We construct a suitable sequence of functions converging towards a quasistatic solution of the problem.  相似文献   

2.
3.
Numerous laboratory experiments indicate that the use of a layer or a coating material attached to the conventional steel body reduce the magnitude of contact stress. Therefore in this paper we solve numerically the wheel–rail contact problem with friction and wear assuming the existence of a small elastic layer on the rail surface. Material properties of this layer are changing with its depth. The friction between the bodies is governed by Coulomb law. In contact zone Archard's law of wear is assumed. We take special features of this rolling contact problem and use so-called quasistatic approach to solve this contact problem. Finite element method is used as a discretization method. The numerical results including the distribution of normal stress along the contact boundary are provided and discussed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We develop a constructive iterative algorithm for solution of a quasivariational system that describes the quasistatic unilateral thermal contact interaction of two anisotropic thermoelastic bodies. For the generalized linear dissipative mechanism of interphase slippage and a nonideal thermal contact in the region of real interaction, this algorithm considers heat generation due to friction in the presence of an adhesive layer. We establish the sufficient conditions for the algorithm to be valid and its convergence rate in the norms of the corresponding functional spaces.  相似文献   

5.
In this paper, we study quasistatic abstract variational inequalities with time-dependent constraints. We prove existence results and present an approximation method valid for nonsmooth constraints. Then, we apply our results to the approximation of the quasistatic evolution of an elastic body in bilateral contact with a rigid foundation. The contact involves viscous friction of the Tresca or Coulomb type. We prove existence results for approximate problems and give a full asymptotic analysis, proving strong or weak convergence results. Our work is motivated by the numerical study in the paper [Delost, M.: Quasistatic Problem with Frictional Contact: Comparison between Numerical Methods and Asymptotic Analysis Related to Semi Discrete and Fully Discrete Approximations. University of Nice, Nice (2007, to appear)] and explains the choice of the approximation made in it.  相似文献   

6.
We consider a quasistatic frictional contact problem between a piezoelectric body and a foundation. The contact is modeled with normal compliance and friction is modeled with a general version of Coulomb's law of dry friction; the process is quasistatic and the material's behavior is described by an electro-viscoelastic constitutive law with damage. We derive a variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field, and the damage field. Then we provide the existence of a unique weak solution to the model. The proof is based on arguments of evolutionary variational inequalities and fixed point.  相似文献   

7.
A variational method is developed for solving friction contact problems, in which the friction obeys Coulomb's of friction law in velocities, and numerical solutions of three-dimensional problems of the contact of a sphere, a cylinder of finite length and a cube with an elastic half-space are constructed. It is established that the maximum frictional forces correspond to a boundary point of the regions of adhesion and slippage. When the number of steps,increase this maximum decreases, and the distribution of the frictional forces becomes smoother. Certain undesirable effects that can arise during numerical implementation of the method – numerical artefacts – are described. These effects can occur in the numerical solution of problems with a different physical content, the mathematical structure of which is similar to the structure of the contact problems investigated, as the artefacts are caused by the presence of unilateral constraints and by the dependence on external effects of the region in which unilateral constraints with an equally sign occur. This problem is solved by an appropriate choice of the load-step zero approximations.  相似文献   

8.
The paper is concerned with the numerical solution of a thermoelastic rolling contact problem with wear. The friction between the bodies is governed by Coulomb law. A frictional heat generation and heat transfer across the contact surface as well as Archard's law of wear in contact zone are assumed. The friction coefficient is assumed to depend on temperature. In the paper quasistatic approach to solve this contact problem is employed. This approach is based on the assumption that for the observer moving with the rolling body the displacement of the supporting foundation is independent on time. The original thermoelastic contact problem described by the hyperbolic inequality governing the displacement and the parabolic equation governing the heat flow is transformed into elliptic inequality and elliptic equation, respectively. In order to solve numerically this system we decouple it into mechanical and thermal parts. Finite element method is used as a discretization method. Numerical examples showing the influence of the temperature dependent friction coefficient on the temperature distribution and the length of the contact zone are provided. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A mathematical model for frictionless contact of a deformable body with a rigid moving obstacle is analyzed. The Prandtl–Reuss elastic-perfectly-plastic constitutive law is used to describe the material's behavior, and contact is modeled with a unilateral condition imposed on the surface velocity. The problem is motivated by the process of the plowing of the ground. A variational formulation of the problem is derived in terms of the stresses and the existence of the unique weak solution is proven. The proof is based on arguments for differential inclusions obtained in A. Amassad, M. Shillor and M. Sofonea (2001). A quasistatic contact problem for an elastic perfectly plastic body with Tresca's friction. Nonlin. Anal., 35, 95–109. Finally, a study of the continuous dependence of the solution on the data is presented.  相似文献   

10.
We consider a mathematical model which describes the bilateral contact between a deformable body and an obstacle. The process is quasistatic, the material is assumed to be viscoelastic with long memory and the friction is modeled with Tresca’s law. The problem has a unique weak solution. Here we study spatially semi-discrete and fully discrete schemes using finite differences and finite elements. We show the convergence of the schemes under the basic solution regularity and we derive order error estimates. Finally, we present an algorithm for the numerical realization and simulations for a two-dimensional test problem.  相似文献   

11.
We consider a model for quasistatic frictional contact between a viscoelastic body and a foundation. The material constitutive relation is assumed to be nonlinear. The mechanical damage of the material, caused by excessive stress or strain, is described by the damage function, the evolution of which is determined by a parabolic inclusion. The contact is modeled with the normal compliance condition and the associated version of Coulomb's law of dry friction. We derive a variational formulation for the problem and prove the existence of its unique weak solution. We then study a fully discrete scheme for the numerical solutions of the problem and obtain error estimates on the approximate solutions.  相似文献   

12.
This paper is proposed for the error estimates of the element‐free Galerkin method for a quasistatic contact problem with the Tresca friction. The penalty method is used to impose the clamped boundary conditions. The duality algorithm is also given to deal with the non‐differentiable term in the quasistatic contact problem with the Tresca friction. The error estimates indicate that the convergence order is dependent on the nodal spacing, the time step, the largest degree of basis functions in the moving least‐squares approximation, and the penalty factor. Numerical examples demonstrate the effectiveness of the element‐free Galerkin method and verify the theoretical analysis.  相似文献   

13.
This paper deals with the numerical solution of the wheel - rail rolling contact problems. The unilateral dynamic contact problem between a rigid wheel and a viscoelastic rail lying on a rigid foundation is considered. The contact with the generalized Coulomb friction law occurs at a portion of the boundary of the contacting bodies. The Coulomb friction model where the friction coefficient is assumed to be Lipschitz continuous function of the sliding velocity is assumed. Moreover Archard's law of wear in the contact zone is assumed. This contact problem is governed by the evolutionary variational inequality of the second order. Finite difference and finite element methods are used to discretize this dynamic contact problem. Numerical examples are provided. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We consider a mathematical model which describes the quasistatic process of contact between a piezoelectric body and an electrically conductive support, the so-called foundation. We model the material's behavior with a nonlinear electro-viscoelastic constitutive law; the contact is frictionless and is described with the Signorini condition and a regularized electrical conductivity condition. We derive a variational formulation for the problem and then we prove the existence of a unique weak solution to the model. The proof is based on arguments of nonlinear equations with multivalued maximal monotone operators and fixed point. Then we introduce a fully discrete scheme, based on the finite element method to approximate the spatial variable and the backward Euler scheme to discretize the time derivatives. We treat the unilateral contact conditions by using an augmented Lagrangian approach. We implement this scheme in a numerical code then we present numerical simulations in the study of two-dimensional test problems, together with various comments and interpretations.  相似文献   

15.
A unilateral contact problem between elastic bodies at small strains glued by a brittle adhesive is addressed in the quasistatic rate-independent setting. The delamination process is modeled as governed by stresses rather than by energies. This leads to a specific scaling of an approximating elastic adhesive contact problem, discretized by a semi-implicit scheme and regularized by a BV-type gradient term. An analytical zero-dimensional example motivates the model and a specific local-solution concept. Two-dimensional numerical simulations performed on an engineering benchmark problem of debonding a fiber in an elastic matrix further illustrate the validity of the model, convergence, and algorithmical efficiency even for very rigid adhesives with high elastic moduli.  相似文献   

16.
The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin–Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.  相似文献   

17.
The deformation of a rod, confined in a fixed external housing, is considered. The friction forces in the contact surface are related to the deformation of the rod by a power relation. A wide range of variation of the friction parameter and the preliminary clearance parameter with which the rod is inserted into the housing is investigated and the characteristic features of the stress and strain distributions are revealed. The dissipation of energy due to friction and the formation of a hysteresis loop in the dependence of the stresses in the loaded end face on its displacement are considered. The problem is solved in a quasistatic formulation. Analytical relations are found for a number of important cases. Other results are obtained by numerical integration of the initial differential problem.  相似文献   

18.
M. Cocou 《Applicable analysis》2018,97(8):1357-1371
The aim of this paper is to study an evolution variational inequality that generalizes some contact problems with Coulomb friction in small deformation elasticity. Using an incremental procedure, appropriate estimates and convergence properties of the discrete solutions, the existence of a continuous solution is proved. This abstract result is applied to quasistatic contact problems with a local Coulomb friction law for nonlinear Hencky and also for linearly elastic materials.  相似文献   

19.
In this paper, a class of generalized evolution variational inequalities arising in quasistatic friction contact problem for viscoelastic materials is introduced and studied. Under some suitable assumptions, we obtain an existence and uniqueness theorem of the solution for the generalized evolution variational inequalities by using Banach’s fixed point theorem. Moreover, we study two numerical approximation schemes of the problem: semidiscrete scheme and fully discrete scheme. For both schemes, we prove the existence of the solution and derive the error estimations.  相似文献   

20.
We consider a mathematical model which describes the bilateral quasistatic contact of a viscoelastic body with a rigid obstacle. The contact is modelled with a modified version of Coulomb's law of dry friction and, moreover, the coefficient of friction is assumed to depend either on the total slip or on the current slip. In the first case, the problem depends upon contact history. We present the classical formulations of the problems, the variational formulations and establish the existence and uniqueness of a weak solution to each of them, when the coefficient of friction is sufficiently small. The proofs are based on classical results for elliptic variational inequalities and fixed point arguments. We also study the dependence of the solutions on the perturbations of the friction coefficient and obtain a uniform convergence result. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号