首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hetero‐arm star polymer, poly(ethylene glycol)‐poly(N‐isopropylacrylamide)‐poly(L‐lysine) (PEG‐PNIPAM‐PLys), was synthesized by “clicking” the azide group at the junction of PEG‐b‐PNIPAM diblock copolymer with the alkyne end‐group of poly(L‐lysine) (PLys) homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopes. Surprisingly, the PNIPAM arm of this hetero‐arm star polymer nearly lose its thermal responsibility. It is found that stable polyelectrolyte complex micelles are formed when mixing the synthesized polymer with poly(acrylic acid) (PAA) in water. The resultant polyelectrolyte complex micelles are core‐shell spheres with the ion‐bonded PLys/PAA chains as core and the PEG and PNIPAM chains as shell. The PNIPAM shell is, as expected, thermally responsive. However, its lower critical solution temperature is shifted to 37.5 °C, presumably because of the existence of hydrophilic components in the micelles. Such star‐like PEG‐PNIPAM‐PLys polymer with different functional arms as well as its complexation with anionic polymers provides an excellent and well‐defined model for the design of nonviral vectors to deliver DNA, RNA, and anionic molecular medicines. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1450–1462, 2009  相似文献   

2.
This analysis of the title compound, C13H13F2IO3, establishes the orientation of (E)‐5‐(CH=CH—I) as antiperiplanar (ap) to the C—C bond (5–6 position) of the 2,4‐di­fluoro­phenyl ring system, with the (E)‐5‐(CH=CH—I) H atom located in close proximity (2.17 Å) to the F4 atom of the 2,4‐di­fluoro­phenyl moiety.  相似文献   

3.
Methyl (2E,4R)‐4‐hydroxydec‐2‐enoate, methyl (2E,4S)‐4‐hydroxydec‐2‐enoate, and ethyl (±)‐(2E)‐4‐hydroxy[4‐2H]dec‐2‐enoate were chemically synthesized and incubated in the yeast Saccharomyces cerevisiae. Initial C‐chain elongation of these substrates to C12 and, to a lesser extent, C14 fatty acids was observed, followed by γ‐decanolactone formation. Metabolic conversion of methyl (2E,4R)‐4‐hydroxydec‐2‐enoate and methyl (2E,4S)‐4‐hydroxydec‐2‐enoate both led to (4R)‐γ‐decanolactone with >99% ee and 80% ee, respectively. Biotransformation of ethyl (±)‐(2E)‐4‐hydroxy(4‐2H)dec‐2‐enoate yielded (4R)‐γ‐[2H]decanolactone with 61% of the 2H label maintained and in 90% ee indicating a stereoinversion pathway. Electron‐impact mass spectrometry analysis (Fig. 4) of 4‐hydroxydecanoic acid indicated a partial C(4)→C(2) 2H shift. The formation of erythro‐3,4‐dihydroxydecanoic acid and erythro‐3‐hydroxy‐γ‐decanolactone from methyl (2E,4S)‐4‐hydroxydec‐2‐enoate supports a net inversion to (4R)‐γ‐decanolactone via 4‐oxodecanoic acid. As postulated in a previous work, (2E,4S)‐4‐hydroxydec‐2‐enoic acid was shown to be a key intermediate during (4R)‐γ‐decanolactone formation via degradation of (3S,4S)‐dihydroxy fatty acids and precursors by Saccharomyces cerevisiae.  相似文献   

4.
Successful application of matrix‐assisted laser desorption/ionization (MALDI) MS started with the introduction of efficient matrices such as cinnamic acid derivatives (i.e. 3,5‐dimethoxy‐4‐hydroxycinnamic acid, SA; α‐cyano‐4‐hydroxycinnamic acid). Since the empirical founding of these matrices, other commercial available cinnamic acids with different nature and location of substituents at benzene ring were attempted. Rational design and synthesis of new cinnamic acids have been recently described too. Because the presence of a rigid double bond in its molecule structure, cinnamic acids can exist as two different geometric isomers, the E‐form and Z‐form. Commercial available cinnamic acids currently used as matrices are the geometric isomers trans or E (E‐cinnamic and trans‐cinnamic acids). As a new rational design of MALDI matrices, Z‐cinnamic acids were synthesized, and their properties as matrices were studied. Their performance was compared with that of the corresponding E‐isomer and classical crystalline matrices (3,5‐dihydroxybenzoic acid; norharmane) in the analysis of neutral/sulfated carbohydrates. Herein, we demonstrate the outstanding performance for Z‐SA. Sulfated oligosaccharides were detected in negative ion mode, and the dissociation of sulfate groups was almost suppressed. Additionally, to better understand the quite different performance of each geometric isomer as matrix, the physical and morphological properties as well as the photochemical stability in solid state were studied. The influence of the E/Z photoisomerization of the matrix during MALDI was evaluated. Finally, molecular modeling (density functional theory study) of the optimized geometry and stereochemistry of E‐cinnamic and Z‐cinnamic acids revealed some factors governing the analyte–matrix interaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The crystal structures of salt 8 , which was prepared from (R)‐2‐methoxy‐2‐(2‐naphthyl)propanoic acid ((R)‐MβNP acid, (R)‐ 2 ) and (R)‐1‐phenylethylamine ((R)‐PEA, (R)‐ 6 ), and salt 9 , which was prepared from (R)‐2‐methoxy‐2‐(1‐naphthyl)propanoic acid ((R)‐MαNP acid, (R)‐ 1 ) and (R)‐1‐(p‐tolyl)ethylamine ((R)‐TEA, (R)‐ 7 ), were determined by X‐ray crystallography. The MβNP and MαNP anions formed ion‐pairs with the PEA and TEA cations, respectively, through a methoxy‐group‐assisted salt bridge and aromatic CH???π interactions. The networks of salt bridges formed 21 columns in both salts. Finally, (S)‐(2E,6E)‐(1‐2H1)farnesol ((S)‐ 13 ) was prepared from the reaction of (2E,6E)‐farnesal ( 11 ) with deuterated (R)‐BINAL‐H (i.e., (R)‐BINAL‐D). The enantiomeric excess of compound (S)‐ 13 was determined by NMR analysis of (S)‐MαNP ester 14 . The solution‐state structures of MαNP esters that were prepared from primary alcohols were also elucidated.  相似文献   

6.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

7.
Cinnamic acid derivatives, particularly α‐cyano‐4‐hydroxycinnamic acid (E‐α‐cyano‐4‐hydroxycinnamic acid or (E)‐2‐cyano‐3‐(4‐hydroxyphenyl)prop‐2‐enoate; CHCA), have been extensively used especially for protein and peptide analysis. Together with the introduction of ionic liquid MALDI matrix (ILM) started the study of applications of IL prepared with CHCA and a counter organic base (ie, aliphatic amines) in which CHCA moiety is the chromophore responsible of UV‐laser absorption. Despite the extensive studies of norharmane (9H‐pyrido[3,4‐b]indole; nHo) applications as matrix and its peculiar basic properties in the ground and electronic excited state, nHo containing ILM was never tested in MALDI‐MS experiments. This pyrido‐indole compound was introduced as MALDI matrix 22 years ago for different applications including low molecular weight (LMW) carbohydrates (neutral, acidic, and basic carbohydrates). These facts encouraged us to use it as a base, for the first time, for ILM preparation. As a rational design of new IL MALDI matrices, E‐α‐cyanocinnamic acid.nHo and E‐cinnamic acid.nHo were prepared and their properties as matrices studied. Their performance was compared with that of (a) the corresponding IL prepared with butylamine as basic component, (b) the corresponding crystalline E‐α‐cyanocinnamic and E‐cinnamic acid, and (c) the classical crystalline matrices (2,5‐dihydroxybenzoic acid, DHB; nHo) used in the analysis of neutral/sulfated carbohydrates. The IL DHB.nHo was tested, too. Herein, we demonstrate the outstanding performance for the IL CHCA.nHo for LMW carbohydrate in positive and negative ion mode (linear and reflectron modes). Sulfated oligosaccharides were detected in negative ion mode, and although the dissociation of sulfate groups was not completely suppressed the relative intensity (RI) of [M ? Na]? peak was quite high. Additionally, to better understand the quite different performance of each IL tested as matrix, the physical and morphological properties in solid state were studied (optical image; MS image).  相似文献   

8.
Stable nanoscale cross‐linked polymer micelles containing Ru complexes (Ru‐CMs) were prepared from monomethoxy[poly(ethylene glycol)]‐block‐poly(L ‐lysine) (MPEG‐PLys) and [(bpy)2Ru(fmbpy)](PF6)2 (bpy=bipyridine, fmbpy=5‐formy‐5′‐methyl‐2,2′‐bipyridine). To stabilize the micelles, bifunctional glutaraldehyde was used as a cross‐linker to react with the free amino groups of the PLys block. After that, the Ru‐CMs showed very good stability in common solvents. The Ru‐CMs showed photocatalytic activity and selectivity in the oxidation of sulfides that were as high as those of the well‐known [Ru(bpy)3(PF6)2] complex, because the micelles were swollen in the methanol–sulfide mixture. Moreover, because of the nanoscale size of the particles and their high stability, the Ru‐CM photocatalysts can be readily recovered by ultrafiltration and reused without loss of photocatalytic activity. This work highlights the potential of using cross‐linked micelles as a platform for developing highly efficient heterogeneous photocatalysts for a number of important organic transformations.  相似文献   

9.
Attempts are being made to overcome the resistance of tumour cells to platinum (Pt) drugs by the synthesis of new generations of Pt complexes, and it is important to find appropriate and simple methods for the characterization of those novel complexes. The additional applicability of such a method for the analysis of the interactions of metal complexes with biomolecules would be advantageous. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS) seems to possess the capability to become this method of choice, since it could be applied to low‐mass complexes as well as for the analysis of large biomolecules. In this work the applicability of flavonoids – quercetin and rutin – as matrices for MALDI‐TOFMS analysis of dichlorido(ethylendiamine)platinum(II) ([PtCl2(en)]), dichlorido(diaminocyclohexane)platinum(II) ([PtCl2(dach)]) and chloride (diethylenetriamine) palladium(II) chloride ([PdCl(dien)]Cl) complexes is demonstrated. Spectra of Pt(II) and Pd(II) complexes recorded in the presence of quercetin and rutin are rather simple: Pt(II) complexes generate [M+Na]+ or [M+K]+ions, whereas the investigated Pd(II) complex gives ions generated by the loss of one Cl? or HCl. Flavonoids give a relatively small number of well‐defined ions in the low‐mass region (at m/z 303.3 for quercetin and m/z 633.5 for rutin). Quercetin and rutin can be applied in much lower concentrations than other common MALDI matrices and require rather low laser intensity. We speculate that flavonoids stabilize the structures of the metal complexes and that they may be useful for the analysis of other biologically active metal complexes, thus implying their broader applicability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A method for the accurate mass measurement of negative radical ions by matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOFMS) is described. This is an extension to our previously described method for the accurate mass measurement of positive radical ions (Griffiths NW, Wyatt MF, Kean SD, Graham AE, Stein BK, Brenton AG. Rapid Commun. Mass Spectrom. 2010; 24: 1629). The porphyrin standard reference materials (SRMs) developed for positive mode measurements cannot be observed in negative ion mode, so fullerene and fluorinated porphyrin compounds were identified as effective SRMs. The method is of immediate practical use for the accurate mass measurement of functionalised fullerenes, for which negative ion MALDI‐TOFMS is the principal mass spectrometry characterisation technique. This was demonstrated by the accurate mass measurement of six functionalised C60 compounds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The synthesis of a range of 3‐(phenylsulfonimidoyl)propanoate derivatives is described. A number of strategies for the imination of the key sulfoxide methyl 3‐(penylsulfinyl)propanoate are discussed including the use of O‐(mesitylsulfonyl)hydroxylamine (MSH) and iminoiodane reagents (Ph IN SO2R). A successful strategy for the preparation of the target compounds was the use of MSH followed by in situ coupling with a N‐Boc‐protected amino acid. The pseudo‐dipeptides thus formed exhibited interesting conformational properties in CDCl3 solution giving evidence of intramolecular H‐bonds in all cases, except for the proline derivative.  相似文献   

12.
Optical resolution of racemic 5‐oxo‐1‐phenyl‐pyrazolidine‐3‐carboxylic acid 2 with L‐amino acid methyl ester via the diastereomers formation was investigated. Treatment of racemic 5‐oxo‐1‐phenyl‐pyrazolidine‐3‐carboxylic acid 2 with L‐valine methyl ester gave diastereomers with a total yield of 86%. The diastereomeric dipeptides can be easily separated by flash column chromatography. Acidic cleavage of the derived diastereomers gave both the optically pure (+)‐(R)‐ and (‐)‐(S)‐5‐oxo‐1‐phenyl‐pyrazolidine‐3‐carboxylic acid ((+)‐(R)‐ 2 and (‐)‐(S)‐ 2 ) with a total yield of 94% and 95%, respectively.  相似文献   

13.
14.
The title compounds, (E)‐2‐[(2‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (I), (E)‐2‐[(3‐bromo­phenyl)­imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (II), and (E)‐2‐[(4‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (III), adopt the phenol–imine tautomeric form. In all three structures, there are strong intra­molecular O—H⋯N hydrogen bonds. Compound (I) has strong inter­molecular hydrogen bonds, while compound (III) has weak inter­molecular hydrogen bonds. In addition to these inter­molecular inter­actions, C—H⋯π inter­actions in (I) and (III), and π–π inter­actions in (I), play roles in the crystal packing. The dihedral angles between the aromatic rings are 15.34 (12), 6.1 (3) and 39.2 (14)° for (I), (II) and (III), respectively.  相似文献   

15.
A series of poly(cyclohexylethylene‐b‐ethylene‐co‐ethylethylene) (C‐E/EE) diblock copolymers containing approximately 50% by volume glassy C blocks and varying fraction (x) of EE repeat units, 0.07 ≤ x ≤ 0.90, was synthesized by anionic polymerization and catalytic hydrogenation. The effects of ethyl branch content on the melt state segment–segment (χ) interaction parameter and soft (E/EE) block crystallinity were studied. The percent crystallinity ranged from approximately 30% at x = 0.07 to 0% at about x ≥ 0.30, while the melting temperature changed from 101 °C at x = 0.07 to 44 °C at x = 0.28. Dynamic mechanical spectroscopy was employed to determine the order–disorder transition (ODT) temperatures, from which χ was calculated assuming the mean‐field prediction (χNn)ODT = 10.5. Previously published results for the temperature dependent binary interaction parameters for C‐E (x = 0.07), C‐EE (x = 0.90), and E‐EE (x = 0.07 and x = 0.90) fail to account for the quantitative x dependence of χ, based on a simple binary interaction model. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 566–574, 2010  相似文献   

16.
3‐Bromothieno[3,2‐c]pyridine‐4‐(5H)‐one ( 1 ) was prepared from (2E)‐3‐(4‐bromo‐2‐thienyl)‐2‐propenoic acid ( 3 ) by the Eloy–Deryckere thermal benzo/heteropyridinone synthesis. A telescoped procedure was developed, which reduces some of the risk associated with the classic procedure. Use of tributylamine as an additive in this process was shown to facilitate E/Z‐isomerization of the intermediate vinyl isocyanate and lower the temperature necessary for the overall thermal process.  相似文献   

17.
Some new compounds (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 5a–e were prepared by 1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐ethanone and various aromatic aldehydes. Then one pot reaction was happened by compounds 5a–e with hydrazine hydrate in acetic acid or propionic acid, respectively, to give the title compounds 1acyl‐5‐aryl‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐4,5‐dihydro‐1H‐pyrazoles 6a–i . All structures were established by MS, IR, CHN, 1H‐NMR and 13C‐NMR spectral data. J. Heterocyclic Chem., (2012).  相似文献   

18.
Hydromagnesiation of alkynylsilanes 1 in diethyl ether gave (Z)‐α‐silylvinyl Grignard reagents 2 , which reacted with arylsulfenyl chlorides 3 to afford stereoselectively (E)‐α‐silylvinyl sulfides 4 in good yields. (E)‐α‐Silylvinyl sulfides 4 could undergo the cross‐coupling reactions with Grignard reagents in the presence of NiCl2(PPh3)2 to give stereoselectively (Z)‐1,2‐disubstituted vinylsilanes 5 . © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:644–647, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20165  相似文献   

19.
Beckmann rearrangement of (E)‐4‐chromanone oxime, (E)‐5‐oximino‐3,4‐dihydro‐1(2H)‐benzoxepines, and (E)‐5‐oximino‐3,4‐dihydro‐1(2H)‐benzothiepine are catalyzed by InBr3 and AgOTf in refluxing acetonitrile resulting in the formation of pharmaceutically active heterocycles benzoxazepin‐4‐one, 5‐oxo‐benzoxazocines, and 5‐oxo‐benzothiazocine derivative, respectively, in excellent yield. J. Heterocyclic Chem., (2012).  相似文献   

20.
Dedicated to Professor Emeritus Miha Ti?ler on the occasion of his 75th birthday Treatment of methyl (S)‐5‐[(E)‐(dimethylamino)methylidene]‐2‐oxotetrahydrofuran‐5‐carboxylate ( 2 ) with potassium cyanide in acetic acid gave (S)‐5‐[(E)‐cyanomethylidene]‐2‐oxotetrahydrofuran‐5‐car‐boxylate ( 3 ), which was used as chiral dipolarophile in 1,3‐dipolar cycloadditions. Reactions of 3 with diazomethane ( 4 ) and nitrile oxides 5a‐c afforded spirolactones 6–8 in 24‐34% diastereomeric excess, while with diazomethane ( 4 ) in the presence of triethylamine, methyl 3‐cyanomethyl‐2‐methoxyfuran‐5‐carboxylate ( 12 ) was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号