首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Polyaniline/montmorillonite (PAn/MMT) composite material has been prepared through chemical‐oxidative polymerization by using NH4S2O8 as the oxidant, and it was found that both the composites have inorganic and organic material characteristics and many outstanding performance through the copolymerization coupling of MMT and polyaniline. Infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA), X‐ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the composition and structures of composite materials, as well as test the conductivity of composite materials through a four‐probe technique. The preparation conditions of PAn/MMT conducting composites are optimized. The optimal conditions have been identified for the reaction time, amount of oxidizer, concentration of HCl, and the amount of MMT. Besides, the results show that when the reaction lasts for 8 hr in the ice bath, the amount of MMT is 0.4 g/5 ml An, the mole ratio of oxidant to aniline is 1, and the concentration of hydrochloric acid is 2 M, the composite had the largest conductivity up to 11.5 S/cm. In addition, we also did an elemental analysis of the composite mechanism of PAn/MMT composites. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Various alkylating and acylating agents, with different electrophilicity, were allowed to react with polyaniline “emeraldine base” (Pan-EB) or its anion. Replacing the N-hydrogens of polyaniline by various acyl or benzyl groups strongly affected the solubility and the electrical conductivity of the polymer. Neutral Pan-EB was reacted with benzoyl chloride, p-t-butylbenzoyl chloride or pivaloyl chloride in N,N′-dimethylpropylene urea (DMPU) solutions. While the benzoyl and pivaloyl derivatives showed very poor solubility in common organic solvents, the p-t-butylbenzoyl derivative was readily soluble in THF, chloroform, DMSO, etc. As expected, these acyl derivatives showed diminished electrical conductivity relative to that of the parent Pan-EB. Benzyl chlorides did not react with neutral Pan-EB. Attempts to prepare solutions of the nitrogen anion of Pan-EB by reaction with sodium hydride in DMSO or DMPU led invariably to crosslinked insoluble material. This was ascribed to Michael addition of the formed nitrogen anions to the quinonimine moieties. However forming the nitrogen anion in presence of p-t-butylbenzyl chloride trapped it to form N-benzylated Pan-EB. This was a soluble high molecular weight, electrically conductive (4.3 × 10−1 S cm−1 as the hydrochloride) N-alkyl Pan-EB. Reacting Pan-EB with excess of both sodium hydride and benzyl chlorides led to film-forming per-benzylated Pan-leucoemeraldine reduced form. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1673–1679, 1997  相似文献   

4.
The room temperature electrical conductivity of polyaniline (PANI) was found to increase remarkably after it was heated in tetrahydrofuran (THF) with refluxing for a certain period and then doped with methanesulfonic acid (MSA). The enhanced electrical conductivity of PANI was attributed to a partially cross‐linked network generated via the formation of new chemical bonds between adjacent PANI chain segments during thermal treating, which may shorten the inter‐chain distance and facilitate inter‐chain transition of charge carriers in doped PANI. During the refluxing, the moderate dissolving power for PANI as well as a much lower boiling point of THF were considered to have a unique effect on the formation of such partially cross‐linked network in PANI. As a comparison, PANI treated in poor solvents like methanol (or ethanol) and PANI treated in dimethyl formamide (DMF), which is a better solvent than THF but has higher boiling point, did not show an obviously increased electrical conductivity. Study on X‐ray diffraction (XRD) analysis of PANI after refluxing showed that crystallinity decreased gradually with the increase of cross‐linking degree, but the inter‐chain cross‐linking probably occurred first in crystalline region and then in the amorphous region. Electrical conductivity of PANI decreased after it was refluxed with THF for an extended period due to the decreased crystallinity and doping in PANI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
以氯金酸(HAuCl4)为氧化剂,在两种不同无机酸(HCl和H2SO4)的掺杂下,通过调节反应体系中混合溶剂的醇水比例,用一步氧化苯胺聚合法成功制备了不同形貌的纳米聚苯胺及聚苯胺/金复合材料.通过扫描电子显微镜(SEM)、紫外可见吸收光谱(UV-Vis)和红外光谱(FT-IR)对产物的形貌和结构进行了表征.在此基础上,进一步讨论了聚苯胺/金复合材料可能的形成机理.  相似文献   

6.
Poly(aniline-co-phenetidine)s were synthesized by the copolymerization of aniline and o-phenetidine (o-ethoxyaniline). The molar feed ratio of the starting aniline monomers was varied to result in copolymers with different compositions. The actual composition was deduced by integrated proton NMR spectroscopy. The copolymers exhibit excellent solubility characteristics. It was particularly interesting to find that the 20% ethoxyaniline containing copolymer exhibits excellent solubility and yet retains the high conductivity characteristic of the unsubstituted homopolymer. The conductivity of the hydrochloride salt of this par-ticular copolymer is identical to that of the unsubstituted derivative. However, the copolymer solubility greatly exceeds that of the unsubstituted homopolymer. The copolymer in the base form exhibits very high solubility in NMP and the resulting solutions are exceedingly more stable than those of the unsubstituted derivative. A 10% by weight solution of the 20% ethoxy copolymer in NMP is stable for ? 50 days at room temperature afterwhich a gel is formed as compared to previous reports of ? 3–10 h stability for corresponding solutions of the unsubstituted derivative. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Polyaniline (PANI)/organoclay exfoliated nanocomposites containing different organoclay contents (14–50 wt%) were prepared. PANI emeraldine base (EB) and oligomeric PANI (o‐PANI) were intercalated into montmorillonite (MMT) modified by four types of polyoxyalkylene diamine or triamine (organoclay) using N‐methyl pyrolidinone (NMP) as a solvent in the presence of 0.1 M HCl. o‐PANI and EB have been synthesized by oxidative polymerization of aniline using ammonium peroxydisulfate (APS). Infrared absorption spectra (IR) confirm the electrostatic interaction between negatively charged surface of MMT and positively charged sites in PANI. X‐ray diffraction (XRD) studies disclosed that the d001 spacing between interlamellar surface disappeared at low content of the organoclay. The morphology of these materials was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrical conductivities of the PANI‐organoclay and o‐PANI‐organoclay nanocomposites were 1.5 × 10?3–2 × 10?4 and 9.5 × 10?7–1.8 × 10?9 S/cm, respectively depending on the ratio of PANI. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Spectroscopic [UV–visible and Fourier transform IR (FTIR)] and thermal properties of chemically synthesized polyanilines are found to be affected by varying the protonation media (acetic, citric, oxalic, and tartaric acid). The optical spectra show the presence of a greater fraction of fully oxidized insulating pernigraniline phase in polyaniline doped with acetic acid. In contrast, the selectivity in the formation of the conducting phase is higher in oxalic acid as a protonic acid media. The FTIR spectra of these polymers reveal a higher ratio of the relative intensities of the quinoid to benzenoid ring modes in acetic acid doped polyaniline. Scanning electron micrographs revealed a sponge‐like structure derived from the aggregation of the small granules in acetic acid and oxalic acid doped polyaniline. A three‐step decomposition pattern is observed in all the polymers, regardless of the protonic acid used for the doping. The second step loss related to the loss of dopant is found to be higher in the oxalic acid doped polymer. In accordance with these results the conductivity is also found to be higher in oxalic acid doped material. The temperature dependent conductivity measurements show the thermal activated behavior in all the polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2043–2049, 2004  相似文献   

9.
Binary dopant mixture of (ZrO2/AgI) (v/v) is prepared in different ratios to enhance the conductivity of the synthesized PANI. DC conductivity of (ZrO2/AgI) (v/v) doped PANI samples is measured in the temperature range (300‐400K). The calculated values of pre‐exponential factor (σ0) indicates that conduction is taking place through hopping process due to localized states present near the Fermi level. Structural changes due to interaction of dopant species with PANI are studied through FT‐IR and Photoluminescence characterization. Photoluminescence (PL) spectra of the doped samples occurred in the form of peaks and the intensities of these peaks vary according to the concentration of dopant mixture. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2682–2687, 2007  相似文献   

10.
采用插层聚合法制备了导电聚苯胺/钙基膨润土、聚苯胺/有机化膨润土复合材料.以电导率为考核指标,通过正交设计优化了苯胺的加入量、反应温度和反应时间等参数.结果表明,苯胺的加入量影响较显著,反应温度对聚苯胺/有机化膨润土复合材料影响较聚苯胺/钙基膨润土体系明显,反应时间的延长,有利于聚苯胺/有机化膨润土复合材料电导率的提高.聚苯胺/钙基膨润土复合材料制备的最佳工艺条件为:苯胺加入量为70%,反应温度为0℃,反应时间为6 h;聚苯胺/有机化膨润土复合材料制备的最佳工艺条件为:苯胺加入量为70%,反应温度为室温,反应时间为8 h.利用红外光谱(FT-IR)、X射线衍射(XRD)和四探针技术表征了材料的组成、结构和性能.结果表明:膨润土经有机化后,晶面间距增大较多;苯胺单体与钙基膨润土插层聚合后,膨润土晶面间距增大不多;苯胺单体与有机化膨润土复合后,破坏了膨润土的晶格结构,形成了混杂复合体系,电导率达10-3S.cm-1.  相似文献   

11.
Solutions of polyaniline in m-cresol with and without camphorsulfonic acid (CSA), as well as films cast from these solutions were studied by ESR spectroscopy at 133–423 K and by optical spectroscopy in the range λ = 350–1100 nm. An analysis of the optical and ESR spectra shows that in the solutions and films without CSA polyaniline is fully doped but the conductivity of these films is low (∼10−8 S cm−1; cf. 100 S cm−1 for the films with CSA). Compared with the CSA-containing samples, the samples without CSA are characterized by broader ESR lines and higher contribution of the Curie spins to the magnetic susceptibility. These facts indicate a weak aggregation of polyaniline chains without CSA, which leads to low conductivity. A formula was proposed, which describes the temperature dependence of the polyaniline ESR linewidth and allows the interchain distance and the mobility of electrons moving along polymer chains to be determined. The conductivity of polyaniline films is affected by moderate heating (363–388 K) of the films and solutions from which the films were cast. It was found that the interchain distances correlate with the conductivity of the films and with the broadening of their ESR lines caused by the effect of O2. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2701–2711, December, 2005.  相似文献   

12.
Polyurethane/polyaniline (PU/PANI) and polyurethane‐poly(methyl methacrylate)/polyaniline (PU‐PMMA/PANI) conductive core‐shell particles were synthesized by a two‐stage polymerization process. The first stage was to produce a core of PU or PU‐PMMA via miniemulsion polymerization using sodium dodecyl sulfate (SDS) as the surfactant. The second stage was to synthesize the shell of polyaniline over the surface of core particles. Hydrogen chloride (HCl) and dodecyl benzenesulfonic acid (DBSA) were used as the dopant agents. Ammonium persulfate (APS) was used as the oxidant for the polymerization of ANI. Different concentrations of HCl, DBSA, and SDS would cause different conformations of PANI chains and thus different morphologies of PANI particles. UV–visible spectra revealed that the polaron band was blue‐shifted because of the more coiled conformation of PANI chains by increasing the concentration of DBSA. Besides, with a high concentration of DBSA, both spherical‐ and rod‐shape PANI particles were observed by transmission electron microscope, and the coverage of PANI particles onto the core surfaces was improved. The key point of formation of rod‐type PANI particles was that DBSA was served with a high concentration accompanied with the existence of HCl or SDS. The better coverage of PANI particles over the core surfaces by charging higher DBSA concentrations resulted in a higher conductivity of hybrid particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3902–3911, 2007  相似文献   

13.
The simultaneous polymerization and crystallization of aniline has been reported earlier. In this article, the X‐ray crystal structure analysis, SEM morphological analysis and electrical properties of such crystals of oligo‐polyanilines are being reported. The structural analysis shows a pseudo‐orthorhombic lattice. The SEM images reveal flaky and triangular growth habit with granular overgrowths on the surface. The bulk conductivities achieved vary from 10?5 S/cm to 10?7 S/cm as the oxidant concentration is reduced from 5 to 0.1%. The temperature dependence showed a transition point upto which there is a decrease in current and above which the current increases. The ESR studies reveal polarons involved in charge conduction and their concentration is proportional to the oxidant concentration. The X‐ray patterns, conductivities, and ESR results have been correlated with the degree of polymerization results obtained from GPC studies. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1127–1137, 2007  相似文献   

14.
一种水中可溶性导电聚苯胺的制备与表征   总被引:2,自引:0,他引:2  
原玲  隋春红  尹荣  龚剑  瞿伦玉 《化学学报》2006,64(21):2210-2214
分别以聚乙二醇(PEG)的水、乙醇溶液为反应媒介, 制备了Keggin结构杂多酸(H4SiW12O40)掺杂的导电聚苯胺材料. 此聚苯胺经IR, XRD, UV-Vis光谱进行了表征, 并采用标准的四探针法对其电导率进行了测定. 同时系统地研究了杂多酸、氧化剂和单体的比例、反应混合体系温度的改变等对所合成聚苯胺的产率、导电率、水中溶解性等方面的影响. 结果表明, 在PEG乙醇溶液中制备的聚苯胺比在水溶液中制备的有较高的产率、电导率和溶解率. 其最高电导率可达到1.87 S/cm, 溶解率可达53%.  相似文献   

15.
Plasma polymerization of aniline and in-situ doping of polvaniline with iodine was carried out using radio frequency glow discharge. Thin films of polyaniline were deposited on platinum and glass. The infrared spectrum shows that the aromatic ring is retained under the plasma conditions. The electrical conductivity measurements indicate that the conductivity increases by more than seven orders of magnitude when the polyaniline is doped by iodine. The scanning electron microscopic studies reveal the formation of irregular pentagons on glass substrate while on platinum, polvaniline forms a fibrillar network. In both the cases a continuous film is obtained.  相似文献   

16.
Photopyroelectric spectroscopy (PPES), in the 400 < λ < 900 nm wavelength range, was used to study thermal properties of differently doped polyaniline (PAN) films. The photopyroelectric intensity signal Vn(λ) and its phase Fn(λ) were independently measured, as well as the intensity Vn(f) and the phase Fn(f) (f being the chopping frequency) for a given λ of the saturation part of the PPES spectrum. Equations of both the intensity and the phase of the PPES signal, taking into account the thermal and the optical characteristics of the PAN films and the pyroelectric detector, were used to fit the experimental results. From the fittings we obtained, with great accuracy, the values of thermal conductivity k and thermal diffusivity coefficient α of PAN films of different doping degrees. It was observed that, in contrast with the strong doping‐dependence of the electrical conductivity, the thermal parameters of PAN films remained practically unchanged under doping. This apparent discrepancy is explained by the granular metal model of doped PAN. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1294–1300, 2000  相似文献   

17.
Poly[ethyl trifluorobuty-2-noate] (PETFB) was prepared from ethyltrifluorobuty-2-noate by anionic polymerization.The polymer was examined by UV-Vis,IR and NMR spec-trometries.It possessed π-conjugated backbone in the main chain.No significant variation in the electrical conductivity of BF3-doped PETFB was observed after more than three months' storage,indicating improved conductive stability in air as compared with polyacetylene.  相似文献   

18.
Polyaniline, synthesized by using potassium dichromate as the oxidant, was doped with iodine in order to increase its electrical conductivity. The iodine-doped polyanilines attained a conductivity of 1.83 × 10−3 S/cm, which was about eight orders of magnitude greater than that of intrinsic polyaniline. The iodine-doped polyanilines did not absorb moisture readily when compared to the protonic-acid-doped polyanilines. Fourier transform infrared (FTIR) and x-ray photoelectron spectroscopy (XPS) results indicated that iodine-doping reactions occurred at the N-atoms in the quinoid structural units of the polyaniline molecular chains and consequently formed the charge transfer complexes. The iodine in the iodine-doped polyanilines existed mainly in the forms of I and I anions. As the doping level increased, the relative content of I anions increased. Thermogravimetric analysis (TGA) results showed that there was about 6 wt % of iodine strongly bonded to the polyanilines since they would not evolve even at the structural decomposition temperatures of the polymer backbones. Wide-angle x-ray diffraction spectroscopy (WAXD) results revealed that the intrinsic polyaniline was an amorphous polymer but the regularity of polyaniline chains increased after iodine-doping. The iodine-doped polyanilines also showed a decrease in thermal stability. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1993–2001, 1997  相似文献   

19.
Polyaniline–dodecylbenzene sulfonic acid (PAn–DBSA) complex was thermally treated and its conductivity and structure change were investigated. The conductivity increased linearly from 1.1 × 10−4 to 3.0 × 10−1 S/cm on thermal heating until 140°C, but decayed above 200°C. The increase was caused by an additional thermal doping resulting from an increasing mobility of undoped dopants. After the thermal doping, the formation of the layered structure of PAn–DBSA is made. The decrease was caused by the thermal decomposition of dopants. The conductivity changes at a high temperature was strongly dependent on the nature of the dopant. The results were confirmed by means of X-ray patterns and Fourier transform infrared spectra obtained in the heating and cooling processes of polyaniline.  相似文献   

20.
Considering the application potentials of organic materials possessing both conducting and ferromagnetic functions in various electronic devices, an attempt was made to prepare conducting polyaniline (PANI) layered magnetic nano composite polymer particles. Two routes were used to modify magnetic Fe3O4 core particles. In one route, seeded emulsion polymerization of methyl methacrylate (MMA) was carried out in presence of nano‐sized Fe3O4 core particles. In another route, cross‐linker ethyleneglycol dimethacrylate (EGDM) was used in addition to MMA. The modified composite particles were named as Fe3O4/PMMA and Fe3O4/P(MMA‐EGDM), respectively. Finally, seeded chemical oxidative polymerization of aniline was carried out in the presence of Fe3O4/PMMA and Fe3O4/P(MMA‐EGDM) composite seed particles to obtain Fe3O4/PMMA/PANI and Fe3O4/P(MMA‐EGDM)/PANI composite polymer particles. The modification of Fe3O4 core particles was confirmed by electron micrographs, FTIR, UV–visible spectra, X‐ray photoelectron spectra, X‐ray diffraction pattern and thermogravimetric analyses. A comparative study showed that crosslinking of intermediate shell improved the magnetic susceptibility and electrical conductivity of PANI layered magnetic nano composite particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号