首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a quantitative Grazing Incidence Small Angle X‐ray Scattering (GISAXS) study of a dense film of mutually oriented carbon nanotubes (CNTs) grown by a catalytically‐activated DC HF CCVD process after dispersion of metallic catalytic (Co) islands on SiO2/Si(100) substrates. The GISAXS pattern analysis is expanded to non‐correlated surface science systems and is based on CNTs density, characteristic lengths, atomic Co dispersion throughout the CNTs and roughnesses of uncorrelated particles. The results are closely compared to SEM and TEM observations. The GISAXS patterns, even dominated by envelope features of disordered objects, provide significant complementary quantitative data about CNTs films. The results underline that cobalt continuously fills the nanotube in the course of the growth and that the CNTs experience a large tendency toward mutual alignment. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Based on first principle FP‐LAPW calculations, we have studied the electronic and magnetic properties of anatase TiO2 with Ti cation vacancy. We find that the Ti cation vacancy defect can induce a magnetic moment of about 4μB/supercell. The magnetic moment mainly comes from p‐orbitals of O atoms which surround the Ti vacancy. We also find that the two Ti vacancies in anatase always coupled ferromagnetically. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Ultra‐thin, optically transparent and electrically conducting films of pure carbon nanotubes (CNTs) are widely studied thanks to their promise for broad applications. In the present work, we study and compare different deposition techniques for the production of these networks: dip‐coating, spray‐coating, vacuum filtration and electrophoretic deposition on a quartz glass using single‐walled carbon nanotubes (SWCNTs) produced by the HiPCo method. In order to optimize the networks, besides the various deposition techniques we also investigate how the optical and electrical properties vary if the networks are fabricated from different CNTs, all synthesized by the CVD method: SWCNTs, DWCNTs and MWCNTs. As the main criteria for evaluating the quality of these CNT networks we measure the electrical surface resistance at a certain optical transmittance and correlate it to the morphology (homogeneity and roughness) of the networks. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We study the mechanism leading to the metallization of the β‐SiC(001) Si‐rich surface induced by hydrogen adsorption. We analyze the effects of band bending and demonstrate the existence of a quasi‐2D electron gas, which originates from the donation of electrons from adsorbed hydrogen to bulk conduction states. We also provide a simple model that captures the main features of the results of first‐principles calculations, and uncovers the basic physics of the process. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present a first-principles study of the effects of many-electron interactions on the optical properties of single-walled carbon nanotubes. Motivated by recent experiments, we have carried out ab initio calculations on the single-walled carbon nanotubes (3, 3), (5, 0) and (8, 0). The calculations are based on a many-body Greens function approach in which both the quasiparticle (single-particle) excitation spectrum and the optical (electron–hole excitation) spectrum are determined. We show that the optical spectrum of both the semiconducting and metallic nanotubes studied exhibits important excitonic effects due to their quasi-one-dimensional nature. Binding energies for excitonic states range from zero for the metallic (5, 0) tube to nearly 1 eV for the semiconducting (8, 0) tube. Moreover, the metallic (3, 3) tube possesses exciton states bound by nearly 100 meV. Our calculated spectra explain quantitatively the observed features found in the measured spectra. PACS 78.67.Ch; 71.35.Cc; 73.22.-f  相似文献   

6.
The local conductivity of SrTiO3 thin films epitaxially grown on SrRuO3‐buffered SrTiO3 single crystals has been investigated in detail with an atomic force microscope equipped with a conducting tip (LC‐AFM). These experiments demonstrate that the conductivity of SrTiO3 thin films originates from nanoscale well‐conducting filaments connecting the surface to the SrRuO3 bottom electrode. The electrical conduction of the filaments is shown to be reversibly modulated over several orders of magnitude by application of an appropriate electrical field. We analyze the resistive switching by addressing individual filaments with the AFM tip as well as by scanning areas up to the µm scale. Temperature dependent measurements reveal that resistive switching on a macroscopic scale can be traced down to the insulator‐to‐metal transition of the independently switchable filaments. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We report the growth of ZnO nanorods with pentagonal cross‐section in electrodeposition on p‐type Si substrates. Cathodic potentials smaller than those used for growth of hexagonal nanorods are used. The pentagonal wires have a typical length of 1–2 µm and grow out of an inhomogeneous nano‐crystalline thin film. We tentatively explain the occurrence of the pentagonal morphology in terms of kinetic limitations for electron transport in the p‐Si substrate and changed chemical conditions at the growth surface. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Recently, we have reported on the characterization of various carbonaceous materials including multiwalled carbon nanotube (MWCNT) filters, which have specific molecular filtering capabilities and good mechanical strength and can be produced in bulk as highly aligned arrays of bundles of CNTs. We have extended our studies using Fourier transform‐Raman spectroscopy with 1064 nm excitation wavelength and a rotating sample holder in the region 1000–2800 cm−1, in addition to 532 and 785 nm, which were used for Raman excitation in our previous study. Raman spectra were analyzed for band positions and line shape with special emphasis on the D‐, G‐ and G′‐ bands. For the single‐walled species, Carbotrap and graphite spectra were also recorded with 488 nm excitation. A dispersion study has been made from the Raman data available with the different excitation wavelengths. Slight band shifts and band broadening could be observed under the two sample conditions, one with the stationary sample and the other with sample rotation. The spectral changes are related to the excessive heating caused in a stationary sample by laser irradiation. Based on our findings in this study combined with our earlier study, we can state that only a careful line shape analysis and study of intensity pattern of the D‐ and G‐Raman bands under well‐defined measurement conditions lends itself as a good measure of degree of alignment in the MWCNT bundles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We present experimental and theoretical evidence of the role played by the spin–orbit coupling in the electronic structure of a pseudomorphic Au monolayer on Nb(001) substrate. The bands found with the help of the angle‐resolved ultraviolet photoelectron spectroscopy (ARUPS) are compared with those obtained from ab initio self‐consistent calculations by the VASP and WIEN2k codes. The slab calculations are performed including geometric relaxation and using both the generalized‐gradient (GGA) and local‐density (LDA) approximations for the exchange–correlation energy. The dispersions and energy positions of the calculated bands agree with the experimentally determined band structure only if the LDA is used and the spin–orbit coupling is included. Therefore, both the structure relaxation and spin–orbit coupling are essential in understanding the electronic structure of the Au/Nb(001) system.

  相似文献   


10.
Photo‐induced degradation of a monolayer of the Ru(II) complex adsorbed on anatase TiO2 thin films was studied by using resonant micro‐Raman spectroscopy. We developed two contrastive experiments to analyze the degradation mechanism. An exponential decay law was found when the dye was irradiated in the absence of a reducing agent. While the sensitized TiO2 thin film electrode was covered by the I/I3 redox couple, the dye degradation exhibited a slowed linear decay. The experimental result was compared and the degradation mechanism was analyzed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Pr3+‐doped Lu2Si2O7 (LPS:Pr) microcrystalline phosphor was prepared by the sol–gel method. We study the LPS:Pr luminescence properties under UV and X‐ray excitation within 80–500 K. The emission spectrum is dominated by fast 5d–4f band peaking at 261 nm having 16 ns decay time. By purely optical contactless methods we determine the energy barrier of 300 meV for thermal ionization of the Pr3+ 5d1 relaxed excited state in LPS host. The barrier is high enough to keep the room temperature quantum efficiency of the Pr3+ luminescence center close to unity. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The intrinsic concentrations of point defects in high‐k binary oxide materials of HfO2, ZrO2, Y2O3 and La2O3 are evaluated on the basis of first‐principles calculations. Oxygen defects are found to dominate over a wide range of the oxygen chemical potential. Neutral oxygen vacancies are likely to be responsible for electron trapping in the investigated materials. In HfO2 and ZrO2, oxygen Frenkel pairs are likely to form. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Features in the spectra of absorption, luminescence, and luminescence efficiency obtained under sample excitation with differently polarized laser radiation, and the nonlinear dependence of the luminescence intensity on the excitation level are explained as due to excitonic transitions in semiconductor (InP)-insulator (chrysotile asbestos) quantum wires. The measured excitonic-transition energies in the quantum wires are in quantitative agreement with calculations. The calculations took into account both the size quantization in a quasi-one-dimensional structure and the “dielectric enhancement” of excitons (the noticeable increase of the exciton binding energy and of the excitonic-transition oscillator strength associated with the increased attraction between the electron and the hole due to the large difference between the dielectric permittivities of the semiconductor and the dielectric matrix).  相似文献   

14.
The utilization of graphene nanoribbons for next generation nanoelectronics is commonly expected to depend on the controlled synthesis that yields a low density of defects. Edge roughness and vacancies have been shown to have a large impact on the performance of graphene nanoribbon transistors. In contrast, we show how certain defects can be used to enhance the electronic and magnetic properties of graphene nanoribbons. We explore the properties of hybrid graphene nanoribbons with armchair and zigzag features joined by an array of pentagon–heptagon structural defects. The graphene nanoribbons display an increased density of states at the Fermi level, and half metallicity in absence of external fields. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present an experimental and theoretical comparison of the weak and strong gate‐coupling regimes that arise for carbon nanotube (CNT) and graphene field‐effect transistors (FETs) in back‐gated and liquid‐gated configuration, respectively. We find that whereas the back‐gate efficiency is suppressed for a liquid‐gated CNT FET, the back gate is still effective in case of a liquid‐gated graphene FET. We calculate the gate‐induced Fermi‐level shifts and induced charge densities. In both strong and weak coupling regimes, nonlinearities occur in the gate dependence of these parameters, which can significantly influence the electronic transport. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The direct excitation of excitonic molecule due to the two-photon absorption process is shown to be strongly enhanced because of two effects of the resonance and the giant oscillator strength as known for the bound exciton. Then it is pointed out that the existence of the excitonic molecule can be confirmed also by this two-photon absorption spectroscopy. We discuss also the property of the excitonic molecules highly excited by this method.  相似文献   

17.
We report on new features in the photoluminescence excitation (PLE) spectra and PLE linear polarization spectra of GaAs/AlAs lateral superlattices grown by molecular beam epitaxy (MBE). These lines appear systematically as the tilt angle of the lateral superlattice is varied. They are identified as zone–edge excitonic transitions by comparison between experimental data and detailed numerical calculations of optical transitions including valence-band mixing and tilt effects.  相似文献   

18.
A microscopic theory for the induced terahertz (THz) absorption of semiconductors is applied to study the time-dependent system response after non-resonant optical excitation. The formation of excitonic populations from an interacting electron-hole plasma is analyzed and the characteristic THz signatures are computed. Good qualitative agreement with recent experiments is obtained.  相似文献   

19.
In a spin‐polarized electron gas, Coulomb interaction couples the spin and motion degrees of freedom to build propagating spin waves. The spin wave stiffness Ssw quantifies the energy cost to trigger such excitation by perturbing the kinetic energy of the electron gas (i.e. putting it in motion). Here we introduce the concept of spin–orbit stiffness, Sso, as the energy necessary to excite a spin wave with a spin polarization induced by spin–orbit coupling. This quantity governs the Coulombic enhancement of the spin–orbit field acting of the spin wave. First‐principles calculations and electronic Raman scattering experiments carried out on a model spin‐polarized electron gas, embedded in a CdMnTe quantum well, demonstrate that Sso = Ssw. Through optical gating of the structure, we demonstrate the reproducible tuning of Sso by a factor of 3, highlighting the great potential of spin–orbit control of spin waves in view of spintronics applications. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
The magnetic properties of materials based on two‐dimensional transition‐metal dichalcogenides (TMDC), namely bulk Fe1/4TaS2 compound as well as TMDC monolayers with deposited Fe films, have been investigated by means of first‐principles DFT calculations. Changing the structure and the composition of these two‐dimensional systems resulted in considerable variations of their physical properties. For the considered systems the Dzyaloshinskii– Moriya (DM) interaction has been determined and used for the subsequent investigation of their magnetic structure using Monte Carlo simulations. Rather strong DM interactions as well as large | D 01|J01 ratios have been obtained in some of these materials, which can lead to the formation of skyrmionic structures varying with the strength of the applied external magnetic field. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号