首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Random and block copolymers of poly (ether sulfone) (PES) and poly (ether ether sulfone) (PEES) were synthesized by the nucleophilic polycondensation of 4,4′‐dichlorodiphenyl sulfone (DCDPS) with 4,4′‐dihydroxydiphenyl sulfone (DHDPS) and hydroquinone (HQ). Chemical structures of these copolymers were characterized by 13C NMR. The monomer molar fraction, sequential distribution, and degree of randomness of the copolymers were determined through analyses of the resonances of quaternary carbons in the DCDPS unit. Experimental results show that the molar fractions of the comonomer determined by 13C NMR analyses are close to the charged values in the synthetic step. Moreover, these copolymers, which were prepared by different polymerization methods, revealed different number‐average sequential length and degree of randomness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1624–1630, 2005  相似文献   

2.

The new monomer (4‐(4′‐trifluoromethyl)phenoxyphenyl)hydroquinone (TFPOPH) was synthesized in a three‐step synthesis. A series of poly(aryl ether ketone) copolymers were prepared by the reaction of (4‐(4′‐Trifluoromethyl)phenoxyphenyl)hydroquinone and hydroquinone (HQ) with 4,4′‐difluorobenzophenone (DFB) in the presence of potassium carbonate in tretramethylene sulfone (TMS). Thermal analyses of the fluorinated copolymers showed that the glass transition temperature and 5.0% weight loss temperature are similar with that of PEEK, and the crystallinity decreased with increasing of TFPOPH. For the copolymer synthesized with the molar fraction of TFPOPH in the diphenol monomers (TFPOPH, HQ) being over 0.2, no cold crystallization temperature and melting temperature were detected, indicating that these copolymers are almost amorphous. The crystal structure of the copolymers with the molar fraction of TFPOPH being not higher than 0.2 is rhombic. The solubility in polar aprotic solvents of poly(aryl ether ketone)s copolymers increases and dielectric constant decreases step by step.  相似文献   

3.
A sulfonimide‐containing comonomer derived from 4,4′‐dichlorodiphenylsulfone was synthesized and copolymerized with 4,4′‐dichlorodiphenylsulfone and 4,4′‐biphenol to prepare sulfonimide‐containing poly(arylene ether sulfone) random copolymers (BPSIs). These copolymers showed slightly higher water uptake than disulfonated poly(arylene ether sulfone) copolymer (BPSH) controls, but their proton‐conductivity values were very comparable to those of the BPSH series with similar ion contents. The proton conductivity increased with the temperature for both systems. For samples with 30 mol % ionic groups, BPSI showed less temperature dependence in proton conductivity and slightly higher methanol permeability in comparison with BPSH. The thermal characterization of the sulfonimide copolymers showed that both the acid and salt forms were stable up to 250 °C under a nitrogen atmosphere. The results suggested that the presumed enhanced stability of the sulfonimide systems did not translate into higher protonic conductivity in liquid water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6007–6014, 2006  相似文献   

4.
New sulfonated poly(arylene ether sulfone) copolymers with high molecular weights were successfully synthesized with controlled degrees of disulfonation of up to 70 mol % via the direct copolymerization of sulfonated aromatic dihalides, aromatic dihalides, and one of four structurally distinct bisphenols. The disodium salts of the 3,3′‐disulfonated‐4,4′‐dichlorodiphenyl sulfone and 3,3′‐disulfonated‐4,4′‐difluorodiphenyl sulfone comonomers were synthesized via the sulfonation of 4,4′‐dichlorodiphenyl sulfone or 4,4′‐difluorodiphenyl sulfone with 30% fuming sulfuric acid at 110 °C. Four bisphenols (4,4′‐bisphenol A, 4,4′‐bisphenol AF, 4,4′‐biphenol, and hydroquinone) were investigated for the syntheses of novel copolymers with controlled degrees of sulfonation. The composition and incorporation of the sulfonated repeat unit into the copolymers were confirmed by 1H NMR and Fourier transform infrared spectroscopy. Solubility tests on the sulfonated copolymers confirmed that no crosslinking and probably no branching occurred during the copolymerizations. Tough, ductile films were solvent‐cast that exhibited increased water absorption with increasing degrees of sulfonation. These copolymers are promising candidates for high temperature proton‐exchange membranes in fuel cells, which will be reported separately in part II of this series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2264–2276, 2003  相似文献   

5.
MPEG–PCL diblock copolymers consisting of methoxy polyethylene glycol (MPEG, 750 g/mol) and poly(?‐caprolactone) (PCL) were synthesized by ring‐opening polymerization. Aqueous solutions of the synthesized diblock copolymers were prepared by dissolving the MPEG–PCL diblock copolymers at concentrations in the range of 0–20 wt %. When the PCL molecular weight was 3000 or greater, the polymer was only partially soluble in water. As the temperature was increased from room temperature, the diblock copolymer solutions showed two phase transitions: a sol‐to‐gel transition and a gel‐to‐sol transition. The sol‐to‐gel phase transition temperature decreased substantially with increasing PCL length. The sol–gel–sol transition with the increase in temperature was confirmed by monitoring the viscosity as a function of temperature. The temperature ranges of the phase transitions measured by the tilting method were in full agreement with those determined from the viscosity measurements. The maximum viscosity of the copolymer solution increased with increasing hydrophobicity of the diblock copolymer and with increasing copolymer concentration. X‐ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses revealed that the diblock copolymers exhibited crystalline domains that favored the formation of an aggregated gel because of the tight aggregation and strong packing interactions between PCL blocks. Scanning electron micrographs of the diblock copolymer solutions in the sol state showed interconnected polyhedral pore structures, whereas those of the gel state revealed a fibrillar‐like morphology. Atomic force microscope (AFM) studies of the sol and gel surfaces showed that the sol surface was covered with fine globular particles, whereas the gel surface was covered with particles in micron‐scale irregular islets. These findings are consistent with uniform mixing of the diblock copolymer and water in the sol state, and aggregation of PCL blocks in the gel state. In conclusion, we confirm that the MPEG–PCL diblock copolymer solution exhibited a sol–gel–sol transition as a function of temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5413–5423, 2006  相似文献   

6.
Partially disulfonated hydroquinone (HQ)‐based poly(arylene ether sulfone) random copolymers were synthesized and characterized for application as proton exchange membranes. The copolymer composition was varied in the degree of disulfonation. The copolymers were characterized by 1H NMR, Differential Scanning Calorimetry (DSC), and other analytical techniques. The copolymer with a 25% degree of disulfonation showed the best balance between water uptake and proton conductivity. The copolymers showed substantially reduced methanol permeability compared with Nafion® and satisfactory direct methanol fuel cell performance. The methanol selectivity improved significantly in comparison to Nafion® 117. At a given ionic composition, the HQ‐based system showed higher water uptake and proton conductivity than the biphenol‐based (BPSH‐xx) poly(arylene ether sulfone)s copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 384–391, 2009  相似文献   

7.
A novel sulfonated diamine, 3,3′‐disulfonic acid‐bis[4‐(3‐aminophenoxy)phenyl]sulfone (SA‐DADPS), was prepared from m‐aminophenol and disodium‐3,3′‐disulfonate‐4,4′‐dichlorodiphenylsulfone. The conditions necessary to synthesize and purify SA‐DADPS in high yields were investigated in some detail. This disulfonated aromatic diamine, containing ether and sulfone linkages, was used to prepare N‐methyl‐2‐pyrrolidinone‐soluble, six‐membered ring polyimide copolymers containing pendent sulfonic acid groups by a catalyzed one‐step high‐temperature polycondensation in m‐cresol. These materials showed much improved hydrolytic stability with respect to phthalimides. High‐molecular‐weight film‐forming statistical copolymers with controlled degrees of disulfonation were prepared through variations in the stoichiometric ratio of disulfonated diamine (SA‐DADPS) in its soluble triethylamine salt form to several unsulfonated diamines. Three unsulfonated diamines, bis[4‐(3‐aminophenoxy)phenyl] sulfone, 4,4′‐oxydianiline, and 1,3‐phenylenediamine, were used to prepare the copolymers. The characterization of the copolymers by 1H NMR, Fourier transform infrared, ion‐exchange capacity, and thermogravimetric analysis demonstrated that SA‐DADPS was quantitatively incorporated into the copolymers. Solution‐cast films of the sulfonated copolymers were prepared and afforded tough, ductile membranes with high glass‐transition temperatures. Methods were developed to acidify the triethylammonium salt membranes into their disulfonic acid form, this being necessary for proton conduction in a fuel cell. The synthesis and characterization of these materials are described in this article. Future articles will describe the performance of these copolymers as proton‐exchange membranes in hydrogen/air and direct methanol fuel cells. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 862–874, 2004  相似文献   

8.
A series of selectively sulfonated poly(arylene ether sulfone)‐b‐polybutadiene copolymers (SPAES‐b‐PB) were prepared based on carboxyl terminated polybutadiene (CTPB) and sulfonated poly(arylene ether sulfone) (SPAES) that was directly prepared by polycondensation of 4,4′‐isopropylidenediphenol with different molar ratios of disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenyl sulfone (SDCDPS) to 4,4′‐dichlorodiphenylsulfone (DCDPS), and subsequent selective postsulfonation of flexible PB block was carried out. Epoxidized modification of membranes was conducted by an in situ‐generated peracid method. The content of sulfonic acid groups attaching to aromatic rings in SPAES was determined by 1H NMR and was in good aggrement with the controlled ratios. The effect of sulfonated rigid blocks on the postsulfonation of PB blocks was studied by Fourier transform infrared spectroscopy. The glass transition temperature (Tg) and the temperature of the melting peak (T) of membranes in acid form were studied by differential scanning calorimetry. Fenton's reagent test revealed that the selectively sulfonated SPAES‐b‐PB membranes had good stability to oxidation. The microstructure of rod‐like rigid SPAES blocks and interpenetrating network of ions were observed by transmission electron microscopy. Complex impedance measurement showed that an epoxidized membrane with SPAES‐40 exhibited the highest proton conductivity (1.08 × 10?1 S/cm, 90 °C), which was due to the formation of obvious ionic networks. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 665–672, 2006  相似文献   

9.
We present a series of novel poly(arylene ether sulfone) copolymers containing pendant oligoaniline groups. A novel monomer containing oligoaniline, 2,6‐difluorobenzoyl aniline tetramer (DFAT), was synthesized by reaction of 2,6‐difluorobenzoyl chloride and parent aniline tetramer and incorporated into the aforementioned copolymers via direct copolymerization with 4,4′‐dichlorodiphenyl sulfone (DCDPS), and 4,4′‐isopropylidene diphenol (BPA) using N,N′‐dimethylacetamide as solvent. The structures of these copolymers were confirmed by FTIR, 1H NMR, and GPC. Spectral analysis of the copolymers in different oxidation states was investigated via UV‐visible spectra. The copolymers exhibited outstanding thermal stability and good solubility in various organic solvents. Their electroactivity, explored with cyclic voltammetry, was found to increase as the content of oligoaniline in the polymer increased. The electric and dielectric properties of the copolymers were also studied in detail. The electrochromic performance of the copolymers was investigated by electrochromic photographs and transmittance spectra; the color of the copolymer thin films changes from grey (at 0.0 V), to green (at 0.4 V), to blue (at 0.6 V) and to pearl blue (at 1.0 V) and the maximum transmittance change (ΔT) at 700 nm is 42.6% (90.7% ? 48.1%). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
High molecular weight poly(vinyl)silazane were synthesized successfully by reversible addition fragmentation chain transfer (RAFT) polymerization in toluene at 120 °C, using dithiocarbamate derivatives and 2,2′‐azobis‐isobutyrylnitrile (AIBN) as the RAFT agents and thermal initiator, respectively. The polymerization of a vinylcyclicsilazane oligomer with 82.5% conversion was readily controlled to increase the molecular weight from 1000 to 12,000 g/mol with a narrow polydispersity <1.5. The resulting polymer showed a high ceramic yield of 70 wt % at 1000 °C. Moreover, the approach was extended successfully to the synthesis of poly(vinyl)silazane‐block‐polystyrene as an inorganic–organic diblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4594–4601, 2008  相似文献   

11.
Multiblock copolymers 1a (Mn = 31,500–47,400) of sulfonated poly(aryl ether)s were synthesized by polycondensation of 4,4′‐difluorobenzophenone (DFBP), bis(4‐hydroxyphenyl)sulfone (BHPS), and an hydroxy‐terminated sulfonated oligomer, which was synthesized from DFBP and 2,2′,3,3′,5,5′‐hexaphenyl‐4,4′‐dihydroxybiphenyl a . The copolymerization of trimeric monomer b with DFBP and BHPS gave a series of copolymers 1b (Mn = 26,200–45,900). The copolymers were then sulfonated with chlorosulfonic acid to give ionomers 3a with hydrophilic multiblock segments and ionomers 3b with segments containing clusters of 18 sulfonic acid groups. The proton exchange membranes cast from ionomers 3a and 3b were characterized with regard to thermal stability, water uptake, proton conductivity, and morphology. Transmission electron microscopy images of 3a‐1 and 3b‐1 revealed a phase separation similar to that of Nafion that may explain their higher proton conductivities compared with randomly sulfonated copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4762–4773, 2009  相似文献   

12.
Direct aromatic nucleophilic substitution polycondensations of disodium 3,3′‐disulfonate‐4,4′‐difluorodiphenylsulfone (SDFDPS), 4,4′‐difluorodiphenylsulfone (DFDPS) (or their chlorinated analogs), and 4,4′‐thiobisbenzenethiol in the presence of potassium carbonate were investigated. Electrophilic aromatic substitution was employed to synthesize the SDFDPS comonomer in high yields and purity. High molecular weight disulfonated copolymers were easily obtained using the SDFDPS monomers, but in general, slower rates and a lower molecular weight copolymer were obtained using the analogous chlorinated monomers. Tough and ductile membranes were solution cast from N,N‐dimethylacetamide for both series of copolymers. The degrees of disulfonation (20–50%) were controlled by varying the ratio of disulfonated to unsulfonated comonomers. Precise control of the ionic concentration, well‐defined ionic locations, and enhanced stability due to the deactivated position of the –SO3H group are some of the suggested advantages of direct copolymerization of sulfonated monomers. Further publications will discuss additional characteristics of these copolymers that have the same repeat unit, but different molecular weights, using methanol permeability, water uptake, protonic conductivity, and dynamic mechanical analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2964‐2976, 2005  相似文献   

13.
High molecular weight bisphenol A or hydroquinone‐based poly(arylene ether phosphine oxide/sulfone) homopolymer or statistical copolymers were synthesized and characterized by thermal analysis, gel permeation chromatography, and intrinsic viscosity. Miscibility studies of blends of these copolymers with a (bisphenol A)‐epichlorohydrin based poly(hydroxy ether), termed phenoxy resin, were conducted by infrared spectroscopy, dynamic mechanical analysis, and differential scanning calorimetry. All of the data are consistent with strong hydrogen bonding between the phosphonyl groups of the copolymers and the pendent hydroxyl groups of the phenoxy resin as the miscibility‐inducing mechanism. Complete miscibility at all blend compositions was achieved with as little as 20 mol % of phosphine oxide units in the bisphenol A poly(arylene ether phosphine oxide/sulfone) copolymer. Single glass transition temperatures (Tg) from about 100 to 200°C were achieved. Replacement of bisphenol A by hydroquinone in the copolymer synthesis did not significantly affect blend miscibilities. Examination of the data within the framework of four existing blend Tg composition equations revealed Tg elevation attributable to phosphonyl/hydroxyl hydrogen bonding interactions. Because of the structural similarities of phenoxy, epoxy, and vinylester resins, the new poly(arylene ether phosphine oxide/sulfone) copolymers should find many applications as impact‐improving and interphase materials in thermoplastics and thermoset composite blend compositions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1849–1862, 1999  相似文献   

14.
Hydrophobic‐hydrophilic sequence multiblock copolymers, based on alternating segments of phenoxide terminated fully disulfonated poly(arylene ether sulfone) (BPS100) and fluorine‐terminated poly(arylene ether sulfone) (6FBPS0) were synthesized and evaluated for application as proton exchange membranes. By utilizing mild reaction conditions the ether–ether interchange reactions were minimized, preventing the randomization of the multiblock copolymers. Tough, ductile, transparent membranes were solution cast from the block copolymers and were characterized with regard to intrinsic viscosity, morphology, water uptake, and proton conductivity. The conductivity values of the 6FBPS0‐BPSH100 membranes were compared to Nafion 212 and a partially fluorinated sulfonated poly(arylene ether sulfone) random copolymer (6F40BP60). The nanophase separated morphology was confirmed by transmission electron microscopy and small angle X‐ray scattering, and enhanced proton conductivity at reduced relative humidity was observed with longer block lengths. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Directly copolymerized wholly aromatic sulfonated poly(arylene ether sulfone) copolymers derived from 4,4′‐biphenol, 4,4′‐dichlorodiphenyl sulfone, 3,3′‐disulfonated, and 4,4′‐dichlorodiphenyl sulfone (BPSH) were evaluated as proton‐exchange membranes for elevated temperature operation (100–140 °C). Acidification of the copolymer from the sulfonated form after the nucleophilic step (condensation) copolymerization involved either immersing the solvent‐cast membrane in sulfuric acid at 30 °C for 24 h and washing with water at 30 °C for 24 h (method 1) or immersion in sulfuric acid at 100 °C for 2 h followed by similar water treatment at 100 °C for 2 h (method 2). The fully hydrated BPSH membranes treated by method 2 exhibited higher proton conductivity, greater water absorption, and less temperature dependence on proton conductivity as compared with the membranes acidified at 30 °C. In contrast, the conductivity and water absorption of a control perfluorosulfonic acid copolymer (Nafion 1135) were invariant with treatment temperature; however, the conductivity of the Nafion membranes at elevated temperature was strongly dependent on heating rate or temperature. Tapping‐mode atomic force microscope results demonstrated that all of the membranes exposed to high‐temperature conditions underwent an irreversible change of the ionic domain microstructure, the extent of which depended on the concentration of sulfonic acid sites in the BPSH system. The effect of aging membranes based on BPSH and Nafion at elevated temperature on proton conductivity is also discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2816–2828, 2003  相似文献   

17.
Hydrophilic/hydrophobic block copolymers as proton exchange membranes (PEMs) has become an emerging area of research in recent years. These copolymers were obtained through moderate temperature (~ 100 °C) coupling reactions, which minimize the ether‐ether interchanges between hydrophobic and hydrophilic telechelic oligomers via a nucleophilic aromatic substitution mechanism. The hydrophilic blocks were based on the nucleophilic step polymerization of 3,3′‐disulfonated, 4,4′‐dichlorodiphenyl sulfone with an excess 4,4′‐biphenol to afford phenoxide endgroups. The hydrophobic (fluorinated) blocks were largely based on decafluoro biphenyl (excess) and various bisphenols. The copolymers were obtained in high molecular weights and were solvent cast into tough membranes, which had nanophase separated hydrophilic and hydrophobic regions. The performance and structure‐property relationships of these materials were studied and compared to random copolymer systems. NMR results supported that the multiblock sequence had been achieved. They displayed superior proton conductivity, due to the ionic proton conducting channels formed through the self‐assembly of the sulfonated blocks. The nano‐phase separated morphologies of the copolymer membranes were studied and confirmed by atomic force microscopy. Through control of a variety of parameters, including ion exchange capacity and sequence lengths, performances as high, or even higher than those of the state‐of‐the‐art PEM, Nafion, were achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1038–1051, 2009  相似文献   

18.
A series of novel side‐chain sulfonated poly(arylene ether sulfone) (SPAES) multiblock and random copolymers were synthesized by condensation polymerization from a new disulfonated aryl sulfone monomer, 4,4′‐difluoro‐2,2′‐bis(3‐sulfobenzoyl)diphenyl sulfone disodium salt (DFBSPS). The chemical structures of DFBSPS and the SPAESs were characterized by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectra. The SPAES membranes prepared by solution cast method exhibited high tensile strength (50–71 MPa) and high radical oxidative stability. They could keep their morphology and maintain proton conductivities after hydrolysis test in 95 °C water for 1000 h. They also showed smaller swelling ratio in in‐plane direction than in through‐plane direction and such an anisotropic effect was more significant for the multiblock copolymers than for the random ones. The multiblock copolymer membranes exhibited higher proton conductivity than the random ones with similar ion exchange capacities (IECs). Preliminary hydrogen‐oxygen fuel cell tests were performed at 60 °C and 80% relative humidity (RH). The results showed that the single cell equipped with the multibiock copolymer membrane SB3 exhibited 0.12 W cm?2 higher maximum output power density than the one equipped with the random copolymer membrane SR3 (with the same IEC), indicating much better performance of the former. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2304–2313  相似文献   

19.
Segmented disulfonated poly(arylene ether sulfone)‐b‐polyimide copolymers based on hydrophilic and hydrophobic oligomers were synthesized and evaluated for use as proton exchange membranes (PEMs). Amine terminated sulfonated poly (arylene ether sulfone) hydrophilic oligomers and anhydride terminated naphthalene based polyimide hydrophobic oligomers were synthesized via step growth polymerization including high temperature one‐pot imidization. Synthesis of the multiblock copolymers was achieved by an imidization coupling reaction of hydrophilic and hydrophobic oligomers oligomers in a m‐cresol/NMP mixed solvent system, producing high molecular weight tough and ductile membranes. Proton conductivities and water uptake increased with increasing ion exchange capacities (IECs) of the copolymers as expected. The morphologies of the multiblock copolymers were investigated by tapping mode atomic force microscopy (TM‐AFM) and their measurements revealed that the multiblock copolymers had well‐defined nano‐phase separated morphologies which were clearly a function of block lengths. Hydrolytic stability test at 80 °C water for 1000 h showed that multiblock copolymer membranes retained intrinsic viscosities of about 80% of the original values and maintained flexibility which was much improved over polyimide random copolymers. The synthesis and fundamental properties of the multiblock copolymers are reported here and the systematic fuel cell properties will be provided in a separate article. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4879–4890, 2007  相似文献   

20.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号