首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this work, we consider numerical methods for solving a class of block three‐by‐three saddle‐point problems, which arise from finite element methods for solving time‐dependent Maxwell equations and some other applications. The direct extension of the Uzawa method for solving this block three‐by‐three saddle‐point problem requires the exact solution of a symmetric indefinite system of linear equations at each step. To avoid heavy computations at each step, we propose an inexact Uzawa method, which solves the symmetric indefinite linear system in some inexact way. Under suitable assumptions, we show that the inexact Uzawa method converges to the unique solution of the saddle‐point problem within the approximation level. Two special algorithms are customized for the inexact Uzawa method combining the splitting iteration method and a preconditioning technique, respectively. Numerical experiments are presented, which demonstrated the usefulness of the inexact Uzawa method and the two customized algorithms.  相似文献   

2.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

3.
In this article we develop a high‐order Godunov method for one‐dimensional convection‐diffusion‐reaction problems where convection dominates diffusion. The heart of this method comes from incorporating the diffusion term via the slope of the linear representation (recovery) of the solution on each grid cell. The method is conservative and explicit. Therefore, it is efficient in computing time. For constant coefficient linear convection, diffusion, and Lipschitz‐type reaction, the properties of the total variation stability and monotonicity preservation are proved. An error estimation is derived. Computational examples are presented and compared with the exact solutions. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 495–512, 2000  相似文献   

4.
In this paper we prove the A‐stability for some sequential and parallel two‐step W‐methods (TSW‐methods and PTSW‐methods) which have been constructed recently for the numerical solution of large stiff ODE systems. To show that the spectral radius of the amplification matrix of a fixed method is less than one we apply Schur's criterion recursively to the characteristic polynomial of the amplification matrix. The computations can be done automatically using computer algebra tools, e.g. Maple 7.  相似文献   

5.
We introduce a linear method for constructing factor‐pair Latin squares of prime‐power order and we identify criteria for determining whether two factor‐pair Latin squares constructed using this linear method are orthogonal. Then we show that families of pairwise mutually orthogonal diagonal factor‐pair Latin squares exist in all prime‐power orders.  相似文献   

6.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

7.
The Hirota bilinear method is a powerful tool for solving nonlinear evolution equations. Together with the linear superposition principle, it can be used to find a special class of explicit solutions that correspond to complex eigenvalues of associated characteristic problems. These solutions are known as complexiton solutions or simply complexitons. In this article, we study complexiton solutions of the the Hirota‐Satsuma‐Ito equation which is a (2 + 1)‐dimensional extension of the Hirota‐Satsuma shallow water wave equation known to describe propagation of unidirectional shallow water waves. We first construct hyperbolic function solutions and consequently derive the so‐called complexitons via the Hirota bilinear method and the linear superposition principle. In particular, we find nonsingular complexiton solutions to the Hirota‐Satsuma‐Ito equation. Finally, we give some illustrative examples and a few concluding remarks.  相似文献   

8.
In this paper, we apply the two‐step Newton method to solve inverse eigenvalue problems, including exact Newton, Newton‐like, and inexact Newton‐like versions. Our results show that both two‐step Newton and two‐step Newton‐like methods converge cubically, and the two‐step inexact Newton‐like method is super quadratically convergent. Numerical implementations demonstrate the effectiveness of new algorithms.  相似文献   

9.
In this paper, we prove finite‐time blowup in energy space for the three‐dimensional Klein‐Gordon‐Zakharov (KGZ) system by modified concavity method. We obtain the blow‐up rates of solutions in local and global space, respectively. In addition, by using the energy convergence, we study the subsonic limit of the Cauchy problem for KGZ system and prove that any finite energy solution converges to the corresponding solution of Klein‐Gordon equation in energy space.  相似文献   

10.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

11.
The elementary cellular automaton following rule 184 can mimic particles flowing in one direction at a constant speed. Therefore, this automaton can model highway traffic qualitatively. In a recent paper, we have incorporated intersections regulated by traffic lights to this model using exclusively elementary cellular automata. In such a paper, however, we only explored a rectangular grid. We now extend our model to more complex scenarios using an hexagonal grid. This extension shows first that our model can readily incorporate multiple‐way intersections and hence simulate complex scenarios. In addition, the current extension allows us to study and evaluate the behavior of two different kinds of traffic‐light controller for a grid of six‐way streets allowing for either two‐ or three‐street intersections: a traffic light that tries to adapt to the amount of traffic (which results in self‐organizing traffic lights) and a system of synchronized traffic lights with coordinated rigid periods (sometimes called the “green‐wave” method). We observe a tradeoff between system capacity and topological complexity. The green‐wave method is unable to cope with the complexity of a higher‐capacity scenario, while the self‐organizing method is scalable, adapting to the complexity of a scenario and exploiting its maximum capacity. Additionally, in this article, we propose a benchmark, independent of methods and models, to measure the performance of a traffic‐light controller comparing it against a theoretical optimum. © 2011 Wiley Periodicals, Inc. Complexity, 2012  相似文献   

12.
In this paper, we develop a new, simple, and accurate scheme to obtain approximate solution for nonlinear differential equation in the sense of Caputo‐Fabrizio operator. To derive this new predictor‐corrector scheme, which suits on Caputo‐Fabrizio operator, firstly, we obtain the corresponding initial value problem for the differential equation in the Caputo‐Fabrizio sense. Hence, by fractional Euler method and fractional trapeziodal rule, we obtain the predictor formula as well as corrector formula. Error analysis for this new method is derived. To test the validity and simplicity of this method, some illustrative examples for nonlinear differential equations are solved.  相似文献   

13.
In this paper, we constructed the split‐step θ (SSθ)‐method for stochastic age‐dependent population equations. The main aim of this paper is to investigate the convergence of the SS θ‐method for stochastic age‐dependent population equations. It is proved that the proposed method is convergent with strong order 1/2 under given conditions. Finally, an example is simulated to verify the results obtained from the theory, and comparative analysis with Euler method is given, the results show the higher accuracy of the SS θ‐method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we first propose the so‐called improved split‐step theta methods for non‐autonomous stochastic differential equations driven by non‐commutative noise. Then, we prove that the improved split‐step theta method is convergent with strong order of one for stochastic differential equations with the drift coefficient satisfying a superlinearly growing condition and a one‐sided Lipschitz continuous condition. Finally, the obtained results are verified by numerical experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The main result in this article is a method of constructing a non‐embeddable quasi‐derived design from a quasi‐derived design and an α‐resolvable design. This method is a generalization of techniques used by van Lint and Tonchev in 14 , 15 and Kageyama and Miao in 8 . As applications, we construct several new families of non‐embeddable quasi‐derived designs. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 263–275, 2008  相似文献   

16.
In this paper we investigate the possibility of using a block‐triangular preconditioner for saddle point problems arising in PDE‐constrained optimization. In particular, we focus on a conjugate gradient‐type method introduced by Bramble and Pasciak that uses self‐adjointness of the preconditioned system in a non‐standard inner product. We show when the Chebyshev semi‐iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble–Pasciak method—the appropriate scaling of the preconditioners—is easily overcome. We present an eigenvalue analysis for the block‐triangular preconditioners that gives convergence bounds in the non‐standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In this article, we introduce a new space‐time spectral collocation method for solving the one‐dimensional sine‐Gordon equation. We apply a spectral collocation method for discretizing spatial derivatives, and then use the spectral collocation method for the time integration of the resulting nonlinear second‐order system of ordinary differential equations (ODE). Our formulation has high‐order accurate in both space and time. Optimal a priori error bounds are derived in the L2‐norm for the semidiscrete formulation. Numerical experiments show that our formulation have exponential rates of convergence in both space and time. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 670–690, 2015  相似文献   

18.
One‐bit quantization is a method of representing bandlimited signals by ±1 sequences that are computed from regularly spaced samples of these signals; as the sampling density λ → ∞, convolving these one‐bit sequences with appropriately chosen filters produces increasingly close approximations of the original signals. This method is widely used for analog‐to‐digital and digital‐to‐analog conversion, because it is less expensive and simpler to implement than the more familiar critical sampling followed by fine‐resolution quantization. However, unlike fine‐resolution quantization, the accuracy of one‐bit quantization is not well‐understood. A natural error lower bound that decreases like 2 can easily be given using information theoretic arguments. Yet, no one‐bit quantization algorithm was known with an error decay estimate even close to exponential decay. In this paper, we construct an infinite family of one‐bit sigma‐delta quantization schemes that achieves this goal. In particular, using this family, we prove that the error signal for π‐bandlimited signals is at most O(2?.07λ). © 2003 Wiley Periodicals, Inc.  相似文献   

19.
20.
In this paper, an implicit‐explicit two‐step backward differentiation formula (IMEX‐BDF2) together with finite difference compact scheme is developed for the numerical pricing of European and American options whose asset price dynamics follow the regime‐switching jump‐diffusion process. It is shown that IMEX‐BDF2 method for solving this system of coupled partial integro‐differential equations is stable with the second‐order accuracy in time. On the basis of IMEX‐BDF2 time semi‐discrete method, we derive a fourth‐order compact (FOC) finite difference scheme for spatial discretization. Since the payoff function of the option at the strike price is not differentiable, the results show only second‐order accuracy in space. To remedy this, a local mesh refinement strategy is used near the strike price so that the accuracy achieves fourth order. Numerical results illustrate the effectiveness of the proposed method for European and American options under regime‐switching jump‐diffusion models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号