首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High molecular weight polyetheresters (PEE) containing thermally curable benzoxazine units in the main chain have been synthesized. For this purpose, first the diol functional monomer is synthesized through the Mannich reaction of 4,4′‐isopropylidenediphenol (bisphenol A), formaldehyde, and 2‐(2‐aminoethoxy)ethanol. Polycondensation of the resulting benzoxazine dietherdiol with adipoyl chloride and terephthaloyl dichloride in the presence of triethyl amine yields the corresponding PEE with the molecular weights of 34.000 Da. The structures of the precursor diol monomer and the resulting PEEs are confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy (1H‐NMR) analysis. Curing behavior of both the monomer and polymers has also been studied by differential scanning calorimetry (DSC). Flexible free standing transparent films of the PEEs are obtained by solvent casting from dichloromethane solution on Teflon plates. The films preserve shape and, to some extent, toughness after thermal curing between 140 and 220 °C. Thermal properties of the cured polymers are also investigated by thermogravimetric analysis (TGA). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 414–420, 2008  相似文献   

2.
Polysiloxanes containing thermally curable benzoxazine units in the main chain have been synthesized. For this purpose, first the diallyl functional benzoxazine monomer is synthesized through the Mannich and respective ring closing reactions of 4,4′‐isopropylidenediphenol (bisphenol A), formaldehyde, and allyamine. Subsequent hydrosilylation reaction of the resulting allylic monomer (B‐ala) with 1,1,3,3‐tetramethyldisiloxane (TMDS) in the presence of Pt catalyst yields the corresponding oligo(B‐ala‐tetramethyldisiloxane)s (OBTMDS). Using the anionic polymerization route, OBTMDS was then converted to poly(bisbenzoxazinedimethylsiloxane)s (PBDMSs) by reacting with readily available cyclic oligomer octamethylcyclotetrasiloxane (D4) or decamethylcyclopentasiloxane (D5) in the presence of tetrabutylammonium hydroxide as catalyst. The structures of the precursor diallyl monomer, the intermediate oligomer, and the resulting polymers are confirmed by Fourier transform infrared and 1H NMR analysis. Curing behavior of the products at various stages has also been studied by differential scanning calorimetry. Flexible transparent films of the PBDMSs are obtained by solvent casting. Thermal properties of the cured polymers are also investigated by thermogravimetric analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
A novel polymer, poly( 1 ) containing benzoxazine and phenyleneethynylene moieties in the main chain with number‐average molecular weights ranging from 1400 to 9800 was obtained quantitatively by the Sonogashira–Hagihara coupling polymerization of the corresponding iodophenyl‐ and ethynylphenyl‐substituted monomer 1 . Poly( 1 ) was heated at 200 °C under N2 for 2 h to obtain the cured polymer, poly( 1 )′ via the ring‐opening polymerization of the benzoxazine moieties. The structures of the polymer before and after curing were confirmed by 1H‐NMR, IR, and UV–vis absorption and reflectance spectroscopies. Poly( 1 )′ was thermally more stable than monomer 1 and poly( 1 ). A specimen was prepared from a mixture of poly( 1 ) and phenol‐diaminodiphenylmethane type benzoxazine 2 by heating at 200 °C for 2 h under N2. The poly( 1 )/ 2 resin was thermally stable than bisphenol‐A type benzoxazine resin 3 . Poly( 1 ) exhibited XRD peaks corresponding to the d‐spacings of 1.26–0.98 and 0.40 nm, assignable to the repeating monomer unit and alignment of polymer molecules, respectively. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2581–2589  相似文献   

4.
Novel mono‐ and difunctional aliphatic oxyalcohol‐based benzoxazines have been synthesized and characterized in detail. Molecular structures of the monomers were investigated by spectral analysis. The obtained benzoxazine monomers exhibit fluidic behavior, which makes them particularly useful for many applications compared to other traditional benzoxazines. Differential scanning calorimetry was used to monitor the thermal crosslinking behavior of synthesized monomers. Mono‐ and bifunctional benzoxazine monomers exhibited low curing exhothermic peak with the onset around 173 and 180 °C, respectively. Relatively, low ring‐opening polymerization temperature was due to the hydroxyl groups present in the structure of the monomers. The hydrogen bonding of hydroxyl groups may cause alignment of the monomers in the liquid state. Thermal stabilty of the polybenzoxazines was studied by thermogravimetric analysis. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

5.
The preparation of soluble and processable polybenzoxazine precursors capable of forming high performance networks is an important field of research with a broad spectrum of application. This study demonstrates an approach that utilizes aromatic sulfonediamine, bisphenol‐A, and formaldehyde in Mannich‐type polycondesation to prepare polybenzoxazine precursor. The structure of the oligomeric precursor (Mn = 2600) was confirmed by FTIR and 1H NMR spectral analysis. The precursor contained both sulfone and benzoxazine ring structures in the backbone. It was shown that small amount of ring‐opened phenolic groups were also present. Thermally activated self‐curing behavior of precursor in the absence of catalyst was studied by differential scanning calorimetry. Thermal properties of the cured polymers were also investigated by thermo gravimetric analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
7.
A new monomer, 4‐methyl‐9‐p‐tolyl‐9,10‐dihydrochromeno[8,7‐e][1,3]oxazin‐2(8H)‐one, possessing both benzoxazine and coumarin rings in its structure was synthesized by the reaction of 4‐methyl‐7‐hydroxycoumarin, paraformaldehyde, and p‐toluidine in methanol at 40 °C and characterized with spectral analysis. Upon photolysis around 300 nm, this monomer underwent dimerization via the [2πs+2πs] cycloaddition reaction. Photodimerization reactions were investigated with UV and 1H NMR spectroscopy measurements. The thermal ring‐opening reaction of the benzoxazine ring was demonstrated with differential scanning calorimetry measurements. The thermal behavior of the cured product was also investigated with thermogravimetric analysis. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1670–1676, 2007  相似文献   

8.
The industrial applications of benzoxazines are limited due to their high curing temperatures. This drawback can be overcome by more reactive precursor compared to conventional benzoxazines or by application of efficient initiators. We report the synthesis of a new resorcinol‐based benzoxazine and its cationic polymerization with thermolatent super acids, namely organic sulfonium hexafluoroantimonates. This combination of a reactive precursor and an efficient initiator results in a curing temperature below 100 °C (differential scanning calorimetry onset) which is up to now one of the lowest polymerization temperatures for benzoxazine systems. Furthermore, the thermal stability of the formed polybenzoxazine has not been influenced by the applied initiators. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1693–1699  相似文献   

9.
1,3‐benzoxazine 1 , bearing 4‐pyridyl moiety on the nitrogen atom, was synthesized from p‐cresol, 4‐aminopyridine, and paraformaldehyde. The efficient synthesis was achieved by adding acetic acid to suppress the strong basicity caused by the presence of 4‐aminopyridine derivatives. Upon heating 1 at 180 °C, it underwent the thermally induced ring‐opening polymerization. The resulting polymer was composed of two types of repeating unit, i.e., (1) Mannich‐type one (‐phenol‐CH2‐NR‐CH2‐) that can be expected from the general ring‐opening polymerization of conventional benzoxazines and (2) a typical phenolic resin‐type one (‐phenol‐CH2‐phenol‐) induced by release of 4‐aminopyridine and paraformaldehyde (unit B). Another structural feature of the polymer was that it possessed a benzoxazine moiety at the chain end. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 410–416  相似文献   

10.
Monofunctional benzoxazine with ortho‐methylol functionality has been synthesized and highly purified. The chemical structure of the synthesized monomer has been confirmed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis. One‐dimensional (1D) 1H NMR is used with respect to varied concentration of benzoxazines to study the specific nature of hydrogen bonding in both ortho‐methylol functional benzoxazine and its para counterpart. The polymerization behavior of benzoxazine monomer has been also studied by in situ FT‐IR and differential scanning calorimetry, experimentally supporting the polymerization mechanism of ortho‐methylol functional benzoxazine we proposed before. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3635–3642  相似文献   

11.
The synthesis of two vinyl‐terminated side‐chain liquid‐crystalline polyethers containing benzylideneaniline moieties as mesogenic cores was approached in two different ways: by chemically modifying poly(epichlorohydrin) with suitable mesogenic acids or by polymerizing analogous glycidyl ester or glycidyl ether derivatives. In all the conditions tested, the first approach led to materials in which the imine group was hydrolyzed. The second approach led to the desired polymers PG2a and PG2b , but only from the glycidyl ether derivatives and when the initiator was the system that combined polyiminophosphazene base t‐Bu‐P4 and 3,5‐di‐t‐butylphenol. These polymers were chemically characterized by IR and 1H and 13C NMR spectroscopies. The estimated degrees of polymerization ranged from 30 to 36. The liquid crystalline behavior of the synthesized polymers was studied by differential scanning calorimetry, polarized optical microscopy (POM) and X‐ray diffraction. Both polymers behave like liquid crystals and exhibited a single mesophase, which was recognized as a smectic C mesophase, probably with a bilayer arrangement, i.e., a smectic C2 mesophase. The crosslinking of both polymers was performed with dicumyl peroxide as initiator, which led to liquid crystalline thermosets. POM and X‐ray diffraction confirmed that the mesophase organization mantained on the crosslinked materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1877–1889, 2006  相似文献   

12.
Thermally induced ring‐opening polymerization of monofunctional N‐allyl‐1,3‐benzoxazine 1a was compared with that of N‐(n‐propyl)‐1,3‐benzoxazine 1b to clarify an unexpected effect of allyl group to promote the polymerization, that is, in spite of the comparable bulkiness of allyl group to n‐propyl group, the polymerization of 1a was much faster than that of 1b . Such a difference in polymerization rate was also observed similarly in the comparison of thermally induced polymerization of a bifunctional N‐allyl‐benzoxazine 2a with that of a bifunctional N‐(n‐propyl) analogue 2b . These observations implied a certain contribution of an electron‐rich C? C double bond of the N‐ally group to promotion of the ring‐opening reaction of 1,3‐benzoxazine into the corresponding zwitterionic species, which would involve a mechanism to stabilize the cationic part of the zwitterionic species based on “neighboring group participation” of the C? C double bond. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
A benzoxazine ( P‐bapf ) based on 9,9‐bis(4‐aminophenyl)fluorene (BAPF), phenol, and formaldehyde was successfully prepared using two‐pot and one‐pot procedures. In the two‐pot approach, BAPF initially reacted with 2‐hydroxybenzaldehyde, leading to 9,9‐bis(4‐(2‐hydroxybenzylideneimino)phenyl)fluorene. The imine linkages of 9,9‐bis(4‐(2‐hydroxybenzylideneimino)phenyl)fluorene were then reduced by sodium borohydride, forming 9,9‐bis(4‐(2‐hydroxybenzylamino)phenyl)fluorene. Finally, paraformaldehyde was added to induce ring closure condensation, forming benzoxazine ( P‐bapf ). In the one‐pot approach, P‐bapf was obtained directly by reacting BAPF, phenol, and paraformaldehyde in various solvents. Among the solvents, we found that using toluene/ethanol (2/1, v/v) as a solvent leads to the best purity and yield. No gelation was observed in the preparation. The structure of the resulting benzoxazine was confirmed by 1H, 13C, 1H? 1H and 1H? 13C NMR spectra. P‐bapf exhibits a photoluminescent emission at 395 nm under an excitation of 275 nm. After curing, the resulting P‐bapf thermoset exhibits Tg as high as 236 °C, and the Tg can be further increased to 260 °C by copolymerization with an equal equivalent of cresol novolac epoxy. The 5% degradation temperature of the P‐bapf thermoset reaches as high as 413 °C (N2) and 431 °C (air). The refractive index at 589 nm is as high as 1.70, demonstrating a high refractive index characteristic of fluorene linkage. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
The photoinitiated ring‐opening cationic polymerization of a monofunctional benzoxazine, 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine, with onium salts such as diphenyliodonium hexafluorophosphate and triphenylsulfonium hexafluorophosphate as initiators was examined. The structures of the polymers thus formed were complex and related to the ring‐opening process of the protonated monomer either at the oxygen or nitrogen atoms. The phenolic mechanism also contributed, but its influence decreased with decreasing monomer concentration. Thermal properties of the polymers were also investigated by differential scanning calorimetry and thermogravimetric analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3320–3328, 2003  相似文献   

15.
Benzoxazines containing various additional functional groups have been extensively reported to improve the properties of polybenzoxazines. In this work, a novel amino‐containing benzoxazine (PDETDA‐NH2) was conveniently synthesized from diethyltoluenediamine (DETDA), 2‐hydroxybenzaldehyde, and paraformaldehyde and was used as a hardener for diglycidyl ether of bisphenol‐A (DGEBA). The curing behaviors of PDETDA‐NH2 and PDETDA‐NH2/DGEBA systems were studied by DSC, FT‐IR, and 1H NMR. When curing, PDETDA‐NH2 was firstly polymerized to N,O‐acetal‐type polymer and then rearranged to Mannich‐type polymer at elevated temperature, while the addition reaction between amino and benzoxazine was discouraged because of the steric hindrance of alkyl substituents. During PDETDA‐NH2/DGEBA curing, it was found that the reactions happened in the order of addition polymerization of amino and epoxide, ring‐opening polymerization of benzoxazine, etherification between phenolic hydroxyl of the polymerized benzoxazine, and epoxide. Compared with DETDA cured DGEBA, PDETDA‐NH2 cured DGEBA showed higher modulus, higher char yield, and much lower water uptake.  相似文献   

16.
1,3‐Benzoxazine monomers having ammonium salt of carboxylic acid have been developed. These 1,3‐benzoxazines 1a and 1b were easily synthesized from the corresponding tetrabutylammonium salts of glycine and β‐alanine, respectively. The glycine‐derived benzoxazine 1a exhibited remarkably high reactivity, which allowed its thermally induced ring‐opening polymerization in bulk at 100 °C, at which N‐methyl‐1,3‐benzoxazine 1d did not undergo the polymerization at all. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A polymer bearing 1,3‐benzoxazine moiety in the side chain was synthesized successfully from poly(allylamine) based on a stepwise strategy consisted of three steps: (1) treatment of poly(allylamine) with salicylaldehyde to convert the amino group in the side chain into the corresponding o‐(iminomethyl)phenol moiety, (2) reduction of the o‐(iminomethyl)phenol to obtain the corresponding o‐(aminomethyl)phenol moiety, and (3) formation of 1,3‐benzoxazine moiety by the reaction of the o‐(aminomethyl)phenol with formaldehyde. The content ratio of benzoxazine moieties and o‐(aminomethyl)phenol moieties in the polymer were tunable by varying amount of formaldehyde. The presence of o‐(aminomethyl)phenol moieties exhibited a significant promoting effect on the crosslinking reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Ten new aromatic polyamides containing s-triazine rings in the main chain were synthesized by the low temperature interfacial polycondensation technique involving the reactions of each of the two s-triazine containing diacylchlorides, viz., 2,4-bis (4-chlorocarbonylphenoxy)-6-methoxy-s-triazine and 2,4-bis(3-chlorocarbonylphenoxy)-6-methoxy-s-triazine, with five aromatic diamines namely, 4,4′-bis(4-aminophenoxy)diphenyl sulfone, 4,4′-bis(3-aminophenoxy)diphenyl sulfone, 2,2-bis[4(4-aminophenoxy) phenyl] propane, 1,4 bis (4-amino-phenoxy) benzene, and 1,3-bis (4-aminophenoxy)benzene. The resulting polyamides were characterized by viscosity measurements, IR and 1H-NMR spectroscopy, solubility tests, x-ray diffraction, and thermogravimetry. The polyamides had inherent viscosities in the range of 0.16–1.06 dL/g in N,N-dimethylacetamide at 30°C. Most of the s-triazine containing polyamides dissolved readily at room temperature in polar solvents. Except for the polyamide PA-2, the polyamides did not lose weight below 350°C under a nitrogen atmosphere. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1077–1085, 1997  相似文献   

19.
Novel monofunctional brominated benzoxazine 3‐(2,4,6‐tribromophenyl)‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐bra) and bifunctional brominated benzoxazine 6,6′‐bis(3‐(2,4,6‐tribromophenyl)‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl) isopropane (B‐bra) were prepared and highly thermally stable polybenzoxazines were obtained by the thermal cure of the corresponding benzoxazines monomers. The chemical structures of these novel monomers were confirmed by FITR, 1H‐NMR and elemental analysis. FTIR spectra and differential scanning calorimetry (DSC) suggested that the polymerization was thermally initiated and occurred via ring‐opening of the monomer in each case. Thermogravimetric analysis (TGA) indicated that brominatation could have a profound effect on increasing char yield and on thermal degradation temperatures. The results of UL‐94 burn test showed that the polybenzoxazines prepared from P‐bra and B‐bra had good flame retardance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Acetylacetonato (acac) complexes of transition metals in the 4th period were examined as catalysts for the ring‐opening polymerization of benzoxazine. This examination revealed that acac complexes of manganese, iron, and cobalt exhibited the highest activity, which was comparable or slightly higher than that exhibited by p‐toluenesulfonic acid. By replacing acac ligand by hexafluoroacetylacetonato (F6‐acac) ligand, the activity of manganese and iron complexes was remarkably enhanced. These metal F6‐acac complexes were tolerant to moisture to allow their use under air without special caution. Another advantage was their negligible effect to promote unfavorable weight loss during the polymerization. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 479–484, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号