首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
6‐Benzimidazolylpyridyl‐2‐carboximidic half‐titanocene complexes, Cp′TiLCl (Cp′ = C5H5, MeC5H4, C5Me5, L = 6‐benzimidazolylpyridine‐2‐carboxylimidic, C1–C13 ), were synthesized and characterized along with single‐crystal X‐ray diffraction. The half‐titanocene chlorides containing substituted cyclopentadienyl groups, especially pentamethylcyclopentadienyl groups were more stable, while those without substituents on the cyclopentadienyl groups were easily transformed into their dimeric oxo‐bridged complexes, (CpTiL)2O ( C14 and C15 ). In the presence of excessive amounts of methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all half‐titanocene complexes showed high catalytic activities for ethylene polymerization. The substituents on the Cp groups affected the catalytic behaviors of the complexes significantly, with less substituents favoring increased activities and higher molecular weights of the resultant polyethylenes. Effects of reaction conditions on catalytic behaviors were systematically investigated with catalytic systems of mononuclear C1 and dimeric C14 . With C1 /MAO, large MAO amount significantly increases the catalytic activity, while the temperature only has a slight effect on the productivity. In the case of C14 /MAO catalytic system, temperature above 60 °C and Al/Ti value higher than 5000 were necessary to observe good catalytic activities. In both systems, higher reaction temperature and low cocatalyst amount gave the polyethylenes with higher molecular weights. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3396–3410, 2008  相似文献   

2.
A series of 6‐(benzimidazol‐2‐yl)‐N‐organylpyridine‐2‐carboxamide were synthesized and transformed into 6‐benzimidazolylpyridine‐2‐carboxylimidate as dianionic tridentate ligands. Bis(2‐(6‐methylpyridin‐2‐yl)‐benzimidazolyl)titanium dichloride ( C1 ) and titanium bis(6‐benzimidazolylpyridine‐2‐carboxylimidate) ( C2 – C8 ) were synthesized in acceptable yields. These complexes were systematically characterized by elemental and NMR analyses. Crystallographic analysis revealed the distorted octahedral geometry around titanium in both complexes C1 and C4 . Using MAO as cocatalyst, all complexes exhibited from good to high catalytic activities for ethylene polymerization. The neutral bis(6‐benzimidazolylpyridine‐2‐carboxylimidate)titanium ( C2 – C8 ) showed high catalytic activities and good stability for prolonged reaction time and elevated reaction temperature; however, C1 showed a short lifetime in catalysis as being observed at very low activity after 5 min. The elevated reaction temperature enhanced the productivity of polyethylenes with low molecular weights, whereas the reaction with higher ethylene pressure resulted in better catalytic activity and resultant polyethylenes with higher molecular weights. At higher ratio of MAO to titanium precursor, the catalytic system generated better activity with producing polyethylenes with lower molecular weights. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3411–3423, 2008  相似文献   

3.
A series of imino‐indolate half‐titanocene chlorides, Cp′Ti(L)Cl2 ( C1 – C7 : Cp′ = C5H5, MeC5H4, C5Me5, L = imino‐indolate ligand), were synthesized by the reaction of Cp′TiCl3 with sodium imino‐indolates. All complexes were characterized by elemental analysis, 1H and 13C NMR spectroscopy. Moreover, the molecular structures of two representative complexes C4 and C6 were confirmed by single crystal X‐ray diffraction analysis. On activation with methylaluminoxane (MAO), these complexes showed good catalytic activities for ethylene polymerization (up to 7.68 × 106 g/mol(Ti)·h) and ethylene/1‐hexene copolymerization (up to 8.32 × 106 g/mol(Ti)·h), producing polyolefins with high molecular weights (for polyethylene up to 1808 kg/mol, and for poly(ethylen‐co‐1‐hexene) up to 3290 kg/mol). Half‐titanocenes containing ligands with alkyl substituents showed higher catalytic activities, whereas the half‐titanocenes bearing methyl substituents on the cyclopentadienyl groups showed lower productivities, but produced polymers with higher molecular weights. Moreover, the copolymerization of ethylene and methyl 10‐undecenoate was demonstrated using the C1 /MAO catalytic system. The functionalized polyolefins obtained contained about 1 mol % of methyl 10‐undecenoate units and were fully characterized by several techniques such as FT‐IR, 1H NMR, 13C NMR, DSC, TGA and GPC analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 357–372, 2009  相似文献   

4.
The half‐titanocene (η5‐pentamethylcyclopentadienyl)tribenzyl titanium (Cp*TiBz3) with methylaluminoxane (MAO) as the cocatalyst was employed to catalyze propene polymerization at ambient pressure. A novel atactic polypropene elastomer with a high molecular weight (w = 2 − 8 × 105) was produced. The effects of the polymerization conditions on the catalytic activity and polymer molecular weight are discussed. 13C NMR analysis confirmed that the catalyst system Cp*TiBz3/MAO produced atactic polypropenes, and the polymerization mechanism was in agreement with the Bernoullian process. The triad sequence distribution of the polymer was measured and found to be as follows: mm = 6.15%, mr = 40.87%, and rr = 52.98% (Bernoullian factor B = 1.03); this indicated that the insertion of propene with the catalyst system followed a chain‐end control model. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 411–415, 2000  相似文献   

5.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

6.
Monocyclopentadienyl titanium imidazolin‐2‐iminato complexes [Cp′Ti(L)X2] 1a (Cp′ = cyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), 1b (X = CH3); 2 (Cp′ = cyclopentadienyl, L = 1,3‐diisopropylimidazolin‐2‐imide, X = Cl); 3 (Cp′ = tert‐butylcyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), upon activation with methylaluminoxane (MAO) were active for the polymerization of ethylene and propylene and the copolymerization of ethylene and 1‐hexene. Catalysts derived from imidazolin‐2‐iminato tropidinyl titanium complex 4 = [(Trop)Ti(L)Cl2] (Trop = tropidinyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide) were much less active. Narrow polydispersities were observed for ethylene and propylene polymerization, but the copolymerization of ethylene/hexene led to bimodal molecular weight distributions. The productivity of catalysts derived from the dialkyl complex 1b activated with [Ph3C][B(C6F5)4] or B(C6F5)3 were less active for ethylene/hexene copolymerization but yielded ethylene/hexene copolymers of narrower molecular weight distributions than those derived from 1a/MAO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6064–6070, 2008  相似文献   

7.
From the carbolithiation of 1‐(cyclopenta‐2,4‐dien‐1‐ylidene)‐N,N‐dimethylmethanamine (=6‐(dimethylamino)fulvene; 3 ) and different lithiated azaindoles 2 (1‐methyl‐7‐azaindol‐2‐yl, 1‐[(diethylamino)methyl]‐7‐azaindol‐2‐yl, and 1‐(methoxymethyl)‐7‐azaindol‐2‐yl), the corresponding lithium cyclopentadienide intermediates 4a – 4c were formed (7‐azaindole=1H‐pyrrolo[2,3‐b]pyridine). The latter underwent a transmetallation reaction with TiCl4 resulting in the (dimethylamino)‐functionalised ‘titanocenes’ 5a – 5c . When the ‘titanocenes’ 5a – 5c were tested against LLC‐PK cells, the IC50 values obtained were of 8.8, 12, and 87 μM , respectively. The most cytotoxic ‘titanocene’, 5a , with an IC50 value of 8.8 μM is nearly as cytotoxic as cis‐platin, which showed an IC50 value of 3.3 μM when tested on the epithelial pig kidney LLC‐PK cell line, and ca. 200 times better than ‘titanocene dichloride’ itself.  相似文献   

8.
Ethylene copolymerizations with norbornene (NBE) using half‐titanocenes containing imidazolin‐2‐iminato ligands, Cp′TiCl2[1,3‐R2(CHN)2C?N] [Cp′ = Cp ( 1 ), tBuC5H4 ( 2 ); R = tBu ( a ), 2,6‐iPr2C6H3 ( b )], have been explored in the presence of methylaluminoxane (MAO) cocatalyst. Complex 1a exhibited remarkable catalytic activity with better NBE incorporation, affording high‐molecular‐weight copolymers with uniform molecular weight distributions, whereas the tert‐BuC5H4 analog ( 2a ) showed low activity, and the resultant polymer prepared by the Cp‐2,6‐diisopropylphenyl analog ( 1b ) possessed broad molecular weight distribution. The microstructure analysis of the poly(ethylene‐co‐NBE)s prepared by 1a suggests the formation of random copolymers including two and three NBE repeating units. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2575–2580  相似文献   

9.
Ethylene (E), propylene (P), and 1‐pentene (A) terpolymers differing in monomer composition ratio were produced, using the metallocenes rac‐ethylene bis(indenyl) zirconium dichloride/methylaluminoxane (rac‐Et(Ind)2ZrCl2/MAO), isopropyl bis(cyclopentadienyl)fluorenyl zirconium dichloride/methylaluminoxane (Me2C(Cp)(Flu)ZrCl2/MAO, and bis(cyclopentadienyl)zirconium dichloride, supported on silica impregnated with MAO (Cp2ZrCl2/MAO/SiO2/MAO) as catalytic systems. The catalytic activities at 25 °C and normal pressure were compared. The best result was obtained with the first catalyst. A detailed study of 13C NMR chemical shifts, triad sequences distributions, monomer‐average sequence lengths, and reactivity ratios for the terpolymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 947–957, 2008  相似文献   

10.
The catalytic properties of a set of ansa‐complexes (R‐Ph)2C(Cp)(Ind)MCl2 [R = tBu, M = Ti ( 3 ), Zr ( 4 ) or Hf ( 5 ); R = MeO, M = Zr ( 6 ), Hf ( 7 )] in α‐olefin homopolymerization and ethylene/1‐hexene copolymerization were explored in the presence of MAO (methylaluminoxane). Complex 4 with steric bulk tBu group on phenyl exhibited remarkable catalytic activity for ethylene polymerization. It was 1.6‐fold more active than complex 11 [Ph2C(Cp)(Ind)ZrCl2] at 11 atm ethylene pressure and was 4.8‐fold more active at 1 atm pressure. The introduction of bulk substituent tBu into phenyl groups not only increased the catalytic activity greatly but also enhanced the content of 1‐hexene in ethylene/1‐hexene copolymerization. The highest 1‐hexene incorporation was 25.4%. In addition, 4 was also active for propylene and 1‐hexene homopolymerization, respectively, and low isotactic polypropylene (mmmm = 11.3%) and isotactic polyhexene (mmmm = 31.6%) were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A catalytic system of new titanium complexes with methylaluminoxane (MAO) was found to effectively polymerize ethylene for high molecular weight polyethylene as well as highly active copolymerization of ethylene and norbornene. The bis (imino‐indolide)titanium dichlorides (L2TiCl2, 1 – 5 ), were prepared by the reaction of N‐((3‐chloro‐1H‐indol‐2‐yl)methylene)benzenamines with TiCl4, and characterized by elemental analysis, 1H and 13C NMR spectroscopy. The solid‐state structures of 1 and 4 were determined by X‐ray diffraction analysis to reveal the six‐coordinated distorted octahedral geometry around the titanium atom with a pair of chlorides and ligands in cis‐forms. Upon activation by MAO, the complexes showed high activity for homopolymerization of ethylene and copolymerization of ethylene and norbornene. A positive “comonomer effect” was observed for copolymerization of ethylene and norbornene. Both experimental observations and paired interaction orbital (PIO) calculations indicated that the titanium complexes with electron‐withdrawing groups in ligands performed higher catalytic activities than those possessing electron‐donating groups. Relying on different complexes and reaction conditions, the resultant polyethylenes had the molecular weights Mw in the range of 200–2800 kg/mol. The influences on both catalytic activity and polyethylene molecular weights have been carefully checked with the nature of complexes and reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3415–3430, 2007  相似文献   

12.
Ethylene/styrene copolymerizations using Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* (C5Me5, 1 ), 1,2,4‐Me3C5H2 ( 2 ), tert‐BuC5H4 ( 3 )]‐MAO catalyst systems were explored under various conditions. Complexes 2 and 3 exhibited both high catalytic activities (activity: 504–6810 kg‐polymer/mol‐Ti h) and efficient styrene incorporations at 25, 40°C (ethylene 6 atm), affording relatively high molecular weight poly (ethylene‐co‐styrene)s with unimodal molecular weight distributions as well as with uniform styrene distributions (Mw = 6.12–13.6 × 104, Mw/Mn = 1.50–1.71, styrene 31.7–51.9 mol %). By‐productions of syndiotactic polystyrene (SPS) were observed, when the copolymerizations by 1 – 3 ‐MAO catalyst systems were performed at 55, 70 °C (ethylene 6 atm, SPS 9.0–68.9 wt %); the ratios of the copolymer/SPS were affected by the polymerization temperature, the [styrene]/[ethylene] feed molar ratios in the reaction mixture, and by both the cyclopentadienyl fragment (Cp′) and anionic ancillary donor ligand (L) in Cp′TiCl2(L) (L = Cl, O‐2,6‐iPr2C6H3 or N=CtBu2) employed. Co‐presence of the catalytically‐active species for both the copolymerization and the homopolymerization was thus suggested even in the presence of ethylene; the ratios were influenced by various factors (catalyst precursors, temperature, styrene/ethylene feed molar ratio, etc.). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4162–4174, 2008  相似文献   

13.
A series of Me4Cp–amido complexes {[η51‐(Me4C5)SiMe2NR]TiCl2; R = t‐Bu, 1 ; C6H5, 2 ; C6F5, 3 ; SO2Ph, 4 ; or SO2Me, 5 } were prepared and investigated for olefin polymerization in the presence of methylaluminoxane (MAO). X‐ray crystallography of complexes 3 and 4 revealed very long Ti N bonds relative to the bonds of 1 . These complexes were employed for ethylene–styrene copolymerizations, styrene homopolymerizations, and propylene homopolymerizations in the presence of MAO. The productivities of the catalysts derived from 3 – 5 were much lower than the productivity of the catalyst derived from 1 for the propylene polymerizations and ethylene–styrene copolymerizations, whereas the styrene polymerization activities were much higher for the catalysts derived from 3 – 5 than for the catalyst derived from 1 . The polymerization behavior of the catalysts derived from the metallocenes 3 – 5 were more reminiscent of monocyclopentadienyl titanocene Cp′TiX3/MAO catalysts than of CpATiX2/MAO catalysts such as 1 containing alkylamido ligands. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4649–4660, 2000  相似文献   

14.
An efficient introduction of vinyl group into poly (ethylene‐co‐styrene) or poly(ethylene‐co?1‐hexene) has been achieved by the incorporation of 3,3′‐divinylbiphenyl (DVBP) in terpolymerization of ethylene, styrene, or 1‐hexene with DVBP using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O?2,6‐iPr2C6H3) [Cp′ = Cp*, tBuC5H4, 1,2,4‐Me3C5H2], in the presence of MAO cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions. Efficient comonomer incorporations have been achieved by these catalysts, and the content of each comonomer could be varied by its initial concentration charged. The postpolymerization of styrene was initiated from the vinyl group remained in the side chain by treatment with n‐BuLi. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2581–2587  相似文献   

15.
The polymerization of vinyl chloride (VC) with half‐titanocene /methylaluminoxane (MAO) catalysts is investigated. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst (Cp* = η5‐pentamethylcyclopentadienyl) afforded high‐molecular‐weight poly(vinyl chloride) (PVC) in good yields, although the polymerization proceeded at a slow rate. With the Cp*TiCl3/MAO catalyst, the polymer was also obtained, but the polymer yield was lower than that with the Cp*Ti(OCH3)3/MAO catalyst. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst was influenced by the MAO/Ti mole ratio and reaction temperature, and the optimum was observed at the MAO/Ti mole ratio of about 10. The optimum reaction temperature of VC with the Cp*Ti(OCH3)3/MAO catalyst was around 20 °C. The stereoregularity of PVC obtained with the Cp*Ti(OCH3)3/MAO catalyst was different from that obtained with azobisisobutyronitrile, but highly stereoregular PVC could not be synthesized. From the elemental analyses, the 1H and 13C NMR spectra of the polymers, and the analysis of the reduction product from PVC to polyethylene, the polymer obtained with Cp*Ti(OCH3)3/MAO catalyst consisted of only regular head‐to‐tail units without any anomalous structure, whereas the Cp*TiCl3/MAO catalyst gave the PVC‐bearing anomalous units. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst did not inhibit even in the presence of radical inhibitors such as 2,2,6,6,‐tetrametylpiperidine‐1‐oxyl, indicating that the polymerization of VC did not proceed via a radical mechanism. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 248–256, 2003  相似文献   

16.
[3‐Cyano‐2‐(2,6‐diisopropylphenyl)aminopent‐2‐en‐4‐(phenylimine)tris (pentafluorophenyl)borate](η5‐C5H5)ZrCl2, [(B(C6F5)3‐ NC‐nacnac)CpZrCl2], precatalyst ( 2 ) can be treated with low concentrations of methylaluminoxane (MAO) to generate active sites capable of copolymerizing ethylene with 1‐octadecene or norbornene under mild conditions. A series of poly(ethylene‐co‐octadecene) and poly(ethylene‐co‐norbornene) copolymers were prepared, and their properties were characterized by NMR, differential scanning calorimetry, and mechanical analysis. The results show that this system produced poly(ethylene‐co‐octadecene) copolymers with a branching content of about 8 mol %. However, upon increasing the comonomer concentration, a drastic reduction in the Mn of the product is observed concomitant with an increase in comonomer incorporation. This leads to a gradual decrease in Young's modulus and stress at break, indicating an increase in the “softness” of the copolymer. In the case of copolymerizations of ethylene and norbornene, the catalytic system ( 2 /MAO) shows a substantial decrease in reactivity in the presence of norbornene and generates copolymer chains in which 5–10 mol % norbornene is in blocks. We also observe that ethylene norbornene copolymers exhibit a high degree of alternating insertions (close to 50%), as determined by NMR spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
The syndiotactic polystyrene polymerization activity of a fluorinated half‐sandwich complex, η5‐pentamethylcyclopentadienyl titanium trifluoride (Cp*TiF3), in the presence of relatively low amounts of methylalumoxane (MAO; MAO/Cp*TiF3 molar ratio = 200/1) and triisobutylaluminum, is significantly increased by the addition of phenylsilane in molar ratios to Cp*TiF3 ranging from about 300/1 to 600/1, if the phenylsilane is added to the monomer. Lower amounts of phenylsilane, such as a 100/1 molar ratio to Cp*TiF3, lead to a reduced polymerization activity in comparison with styrene without phenylsilane. A prereaction of phenylsilane with the catalyst mixture shows a behavior that is strongly dependent on the storage time of the composition and the temperature. A storage time of about 16 h is sufficient to reduce the polymerization conversion to about half of the original value. The results are discussed on the basis of a chain‐transfer reaction with phenylsilane and several catalyst complexes of different stabilities and activities, including an alkylation product of phenylsilane. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3476–3485, 2000  相似文献   

18.
A series of novel bridged multi‐chelated non‐metallocene catalysts is synthesized by the treatment of N,N‐imidazole, N,N‐dimethylimidazole, and N,N‐benzimidazole with n‐BuLi, 2,6‐dimethylaniline, and MCl4 (M = Ti, Zr) in THF. These catalysts are used for copolymerization of ethylene with 1‐hexene after activated by methylaluminoxane (MAO). The effects of polymerization temperature, Al/M molar ratio, and pressure of monomer on ethylene copolymerization behaviors are investigated in detail. These results reveal that these catalysts are favorable for copolymerization of ethylene with 1‐hexene featured high catalytic activity and high comonomer incorporation. The copolymer is characterized by 13C NMR, WAXD, GPC, and DSC. The results confirm that the obtained copolymer features broad molecular weight distribution (MWD) about 33–35 and high 1‐hexene incorporation up to 9.2 mol %, melting temperature of the copolymer depends on the content of 1‐hexene incorporation within the copolymer chain and 1‐hexene unit in the copolymer chain isolates by ethylene units. The homopolymer of ethylene has broader MWD with 42–46. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 417–424, 2010  相似文献   

19.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

20.
A novel fluorinated diamine monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐2,5‐di‐tert‐butylbenzene ( 2 ), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 2,5‐di‐tert‐butylhydroquinone in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Fluorinated polyimides ( 5a – 5f ) were synthesized from diamine 2 and various aromatic dianhydrides ( 3a – 3f ) via thermal or chemical imidization. These polymers had inherent viscosities of 0.77–1.01 dL/g. The 5 series polyimides were soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, and N,N‐dimethylformamide and were even soluble in dioxane, tetrahydrofuran, and dichloromethane. 5 (C) showed cutoff wavelengths between 363 and 404 nm and yellowness index (b*) values of 6.5–40.2. The polyimide films had tensile strengths of 93–114 MPa, elongations to break of 9–12%, and initial moduli of 1.7–2.1 GPa. The glass‐transition temperatures were 255–288 °C. The temperatures of 10% weight loss were all above 460 °C in air or nitrogen atmospheres. In comparison with a nonfluorinated polyimide series based on 1,4‐bis(4‐aminophenoxy)‐2,5‐di‐tert‐butylbenzene, the 5 series showed better solubility and lower color intensity, dielectric constants, and moisture absorption. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2272–2284, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号