首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this paper is to introduce a general iterative method for finding a common element of the solution set of quasi-variational inclusion problems and of the common fixed point set of an infinite family of nonexpansive mappings in the framework Hilbert spaces. Strong convergence of the sequences generated by the purposed iterative scheme is obtained.  相似文献   

2.
ABSTRACT

In this paper, a projection-type approximation method is introduced for solving a variational inequality problem. The proposed method involves only one projection per iteration and the underline operator is pseudo-monotone and L-Lipschitz-continuous. The strong convergence result of the iterative sequence generated by the proposed method is established, under mild conditions, in real Hilbert spaces. Sound computational experiments comparing our newly proposed method with the existing state of the art on multiple realistic test problems are given.  相似文献   

3.
In this paper, we introduce a new iterative scheme to investigate the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of solutions of a variational inequality problem for a relaxed cocoercive mapping by viscosity approximate methods. Our results improve and extend the recent ones announced by Chen et al. [J.M. Chen, L.J. Zhang, T.G. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, doi:10.1016/j.jmaa.2006.12.088], Iiduka and Tahakshi [H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005) 341–350], Yao and Yao [Y.H. Yao, J.C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput, doi:10.1016/j.amc.2006.08.062] and Many others.  相似文献   

4.
The purpose of this paper is to study a new viscosity iterative algorithm based on a generalized contraction for finding a common element of the set of solutions of a general variational inequality problem for finite inversely strongly accretive mappings and the set of common fixed points for a countable family of strict pseudo-contractions in uniformly smooth Banach spaces. We prove some strong convergence theorems under some suitable conditions. The results obtained in this paper improve and extend the recent ones announced by many others in the literature.  相似文献   

5.
《Optimization》2012,61(6):929-944
The purpose of this article is to investigate the problem of finding a common element of the set of fixed points of a non-expansive mapping and the set of solutions of the variational inequality problem for a monotone, Lipschitz continuous mapping. We introduce a hybrid Mann iterative scheme with perturbed mapping which is based on the well-known Mann iteration method and hybrid (or outer approximation) method. We establish a strong convergence theorem for three sequences generated by this hybrid Mann iterative scheme with perturbed mapping. Utilizing this theorem, we also construct an iterative process for finding a common fixed point of two mappings, one of which is non-expansive and the other taken from the more general class of Lipschitz pseudocontractive mappings.  相似文献   

6.
In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of a general system of variational inequalities for a cocoercive mapping in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets. Our results extend and improve the corresponding results of Ceng, Wang, and Yao [L.C. Ceng, C.Y. Wang, J.C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res. 67 (2008) 375–390], Ceng and Yao [L.C. Ceng, J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. doi:10.1016/j.cam.2007.02.022], Takahashi and Takahashi [S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506–515] and many others.  相似文献   

7.
8.
A Mann-type hybrid steepest-descent method for solving the variational inequality ?F(u*), v ? u*? ≥ 0, vC is proposed, where F is a Lipschitzian and strong monotone operator in a real Hilbert space H and C is the intersection of the fixed point sets of finitely many non-expansive mappings in H. This method combines the well-known Mann's fixed point method with the hybrid steepest-descent method. Strong convergence theorems for this method are established, which extend and improve certain corresponding results in recent literature, for instance, Yamada (The hybrid steepest-descent method for variational inequality problems over the intersection of the fixed-point sets of nonexpansive mappings, in Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, D. Butnariu, Y. Censor, and S. Reich, eds., North-Holland, Amsterdam, Holland, 2001, pp. 473–504), Xu and Kim (Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theor. Appl. 119 (2003), pp. 185–201), and Zeng, Wong and Yao (Convergence analysis of modified hybrid steepest-descent methods with variable parameters for variational inequalities, J. Optim. Theor. Appl. 132 (2007), pp. 51–69).  相似文献   

9.
In this article, we introduce and consider a general system of variational inequalities. Using the projection technique, we suggest and analyse new iterative methods for this system of variational inequalities. We also study the convergence analysis of the new iterative method under certain mild conditions. Since this new system includes the system of variational inequalities involving the single operator, variational inequalities and related optimization problems as special cases, results obtained in this article continue to hold for these problems. Our results improve and extend the recent ones announced by many others.  相似文献   

10.
The subgradient extragradient method can be considered as an improvement of the extragradient method for variational inequality problems for the class of monotone and Lipschitz continuous mappings. In this paper, we propose two new algorithms as combination between the subgradient extragradient method and Mann-like method for finding a common element of the solution set of a variational inequality and the fixed point set of a demicontractive mapping.  相似文献   

11.
Huanhuan Cui 《Optimization》2017,66(5):793-809
The proximal point algorithm (PPA) is a classical method for finding zeros of maximal monotone operators. It is known that the algorithm only has weak convergence in a general Hilbert space. Recently, Wang, Wang and Xu proposed two modifications of the PPA and established strong convergence theorems on these two algorithms. However, these two convergence theorems exclude an important case, namely, the over-relaxed case. In this paper, we extend the above convergence theorems from under-relaxed case to the over-relaxed case, which in turn improve the performance of these two algorithms. Preliminary numerical experiments show that the algorithm with over-relaxed parameter performs better than that with under-relaxed parameter.  相似文献   

12.
The purpose of this work is to introduce a hybrid projection method for finding a common element of the set of a generalized equilibrium problem, the set of solutions to a variational inequality and the set of fixed points of a strict pseudo-contraction in a real Hilbert space.  相似文献   

13.
《Optimization》2012,61(6):873-885
Many problems to appear in signal processing have been formulated as the variational inequality problem over the fixed point set of a nonexpansive mapping. In particular, convex optimization problems over the fixed point set are discussed, and operators which are considered to the problems satisfy the monotonicity. Hence, the uniqueness of the solution of the problem is not always guaranteed. In this article, we present the variational inequality problem for a monotone, hemicontinuous operator over the fixed point set of a firmly nonexpansive mapping. The main aim of the article is to solve the proposed problem by using an iterative algorithm. To this goal, we present a new iterative algorithm for the proposed problem and its convergence analysis. Numerical examples for the proposed algorithm for convex optimization problems over the fixed point set are provided in the final section.  相似文献   

14.
In this paper, we introduce an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. Then, we prove a strong convergence theorem which is connected with Combettes and Hirstoaga's result [P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117-136] and Wittmann's result [R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491]. Using this result, we obtain two corollaries which improve and extend their results.  相似文献   

15.
We generalize the concept of well-posedness to a mixed variational inequality and give some characterizations of its well-posedness. Under suitable conditions, we prove that the well-posedness of a mixed variational inequality is equivalent to the well-posedness of a corresponding inclusion problem. We also discuss the relations between the well- posedness of a mixed variational inequality and the well-posedness of a fixed point problem. Finally, we derive some conditions under which a mixed variational inequality is well-posed. This work was supported by the National Natural Science Foundation of China (10671135) and Specialized Research Fund for the Doctoral Program of Higher Education (20060610005). The research of the third author was partially support by NSC 95-2221-E-110-078.  相似文献   

16.
Cone metric spaces and fixed point theorems of contractive mappings   总被引:2,自引:0,他引:2  
In this paper we introduce cone metric spaces, prove some fixed point theorems of contractive mappings on cone metric spaces.  相似文献   

17.
In this paper, we introduce a new iteration method based on the hybrid method in mathematical programming and the descent-like method for finding a common element of the set of solutions for a variational inequality and the set of fixed points for a nonexpansive mapping in Hilbert spaces. Our method modifies and improves some methods in literature.  相似文献   

18.
As important applications of minimax-type inequalities for a family of functions in [3], in the present paper there are given a number of existence theorems on simultaneous solutions to fixed point and minimax-type inequality problems and to fixed point and variational-type inequality problems, not only abolishing the paracompactness hypothesis on the underlying space and weakening the others in the results in [1], but also making them still nicer in form with still more concise and straightforward proofs. Supported both by the National Natural Science Foundation of China and by the Institute of Mathematics, Academia Sinica  相似文献   

19.
In this paper, we introduce two iterative schemes by the general iterative method for finding a common element of the set of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. Then, we prove two strong convergence theorems for nonexpansive mappings to solve a unique solution of the variational inequality which is the optimality condition for the minimization problem. These results extended and improved the corresponding results of Marino and Xu [G. Marino, H.K. Xu, A general iterative method for nonexpansive mapping in Hilbert spaces, J. Math. Anal. Appl. 318 (2006) 43-52], S. Takahashi and W. Takahashi [S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (1) (2007) 506-515], and many others.  相似文献   

20.
In this paper, we investigate the problem for finding the set of solutions for equilibrium problems, the set of solutions of the variational inequalities for k-Lipschitz continuous mappings and fixed point problems for nonexpansive mappings in a Hilbert space. We introduce a new viscosity extragradient approximation method which is based on the so-called viscosity approximation method and extragradient method. We show that the sequence converges strongly to a common element of the above three sets under some parameters controlling conditions. Finally, we utilize our results to study some convergence problems for finding the zeros of maximal monotone operators. Our results are generalization and extension of the results of Kumam [P. Kumam, Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space, Turk. J. Math. 33 (2009) 85–98], Wangkeeree [R. Wangkeeree, An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings, Fixed Point Theory and Applications, 2008, Article ID 134148, 17 pages, doi:10.1155/2008/134148], Yao et al. [Y. Yao, Y.C. Liou, R. Chen, A general iterative method for an finite family of nonexpansive mappings, Nonlinear Analysis 69 (5–6) (2008) 1644–1654], Qin et al. [X. Qin, M. Shang, Y. Su, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear Analysis (69) (2008) 3897–3909], and many others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号