首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a one-dimensional heat equation with inhomogeneous term, satisfying three-point boundary conditions, such that the temperature at the end is controlled by a sensor at the point η. We show that the integral solution, in the space of continuous functions satisfying the boundary values, converges to the equilibrium solution. This answers a question posed for nonlinear Laplacians, but in the linear case only.  相似文献   

2.
This paper is devoted to existence, uniqueness and asymptotic behavior, as time tends to infinity, of the solutions of an integro-partial differential equation arising from the theory of heat conduction with memory, in presence of a temperature-dependent heat supply. A linearized heat flux law involving positive instantaneous conductivity is matched with the energy balance, to generate an autonomous semilinear system subject to initial history and Dirichlet boundary conditions. Existence and uniqueness of solution is provided. Moreover, under proper assumptions on the heat flux memory kernel, the existence of absorbing sets in suitable function spaces is achieved. Received March 23, 1997 - Revised version received November 12, 1997  相似文献   

3.
The main purpose of this paper was to study solutions of the heat equation in the setting of discrete Clifford analysis. More precisely we consider this equation with discrete space and continuous time. Thereby we focus on representations of solutions by means of dual Taylor series expansions. Furthermore we develop a discrete convolution theory, apply it to the inhomogeneous heat equation and construct solutions for the related Cauchy problem by means of heat polynomials.  相似文献   

4.
In this paper, we use a method different from the known literature to investigate the global behavior of the following fourth-order rational difference equation:
  相似文献   

5.
6.
7.
This is the further work on compact finite difference schemes for heat equation with Neumann boundary conditions subsequent to the paper, [Sun, Numer Methods Partial Differential Equations (NMPDE) 25 (2009), 1320–1341]. A different compact difference scheme for the one‐dimensional linear heat equation is developed. Truncation errors of the proposed scheme are O2 + h4) for interior mesh point approximation and O2 + h3) for the boundary condition approximation with the uniform partition. The new obtained scheme is similar to the one given by Liao et al. (NMPDE 22 (2006), 600–616), while the major difference lies in no extension of source terms to outside the computational domain any longer. Compared with ones obtained by Zhao et al. (NMPDE 23 (2007), 949–959) and Dai (NMPDE 27 (2011), 436–446), numerical solutions at all mesh points including two boundary points are computed in our new scheme. The significant advantage of this work is to provide a rigorous analysis of convergence order for the obtained compact difference scheme using discrete energy method. The global accuracy is O2 + h4) in discrete maximum norm, although the spatial approximation order at the Neumann boundary is one lower than that for interior mesh points. The analytical techniques are important and can be successfully used to solve the open problem presented by Sun (NMPDE 25 (2009), 1320–1341), where analyzed theoretical convergence order of the scheme by Liao et al. (NMPDE 22 (2006), 600–616) is only O2 + h3.5) while the numerical accuracy is O2 + h4), and convergence order of theoretical analysis for the scheme by Zhao et al. (NMPDE 23 (2007), 949–959) is O2 + h2.5), while the actual numerical accuracy is O2 + h3). Following the procedure used for the new obtained difference scheme in this work, convergence orders of these two schemes can be proved rigorously to be O2 + h4) and O2 + h3), respectively. Meanwhile, extension to the case involving the nonlinear reaction term is also discussed, and the global convergence order O2 + h4) is proved. A compact ADI difference scheme for solving two‐dimensional case is derived. Finally, several examples are given to demonstrate the numerical accuracy of new obtained compact difference schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

8.
In this note, we consider the following rational difference equation:
  相似文献   

9.
In this paper, we study the difference equation:
  相似文献   

10.
Heat transport at the microscale is of vital importance in microtechnology applications. The heat transport equation differs from the traditional heat diffusion equation in having a second‐order derivative of temperature with respect to time and a third‐order mixed derivative of temperature with respect to space and time. In this study, we develop a high‐order compact finite difference scheme for the heat transport equation at the microscale. It is shown by the discrete Fourier analysis method that the scheme is unconditionally stable. Numerical results show that the solution is accurate. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 441–458, 2000  相似文献   

11.
本文讨论了一类Rosenbrock方法求解比例延迟微分方程,y′(t)=λy(t) μy(qt),λ,μ∈C,0  相似文献   

12.
In this paper, we study the initial-boundary value problem for a class of singular parabolic equations. Under some conditions, we obtain the existence and asymptotic behavior of solutions to the problem by parabolic regularization method and the sub-super solutions method. As a byproduct, we prove the existence of solutions to some problems with gradient terms, which blow up on the boundary.  相似文献   

13.
In this paper, we use a method different from the known literature to investigate the qualitative properties of the following fourth-order rational difference equation:
  相似文献   

14.
We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman-Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term.  相似文献   

15.
In this article, two recent proposed compact schemes for the heat conduction problem with Neumann boundary conditions are analyzed. The first difference scheme was proposed by Zhao, Dai, and Niu (Numer Methods Partial Differential Eq 23, (2007), 949–959). The unconditional stability and convergence are proved by the energy methods. The convergence order is O2 + h2.5) in a discrete maximum norm. Numerical examples demonstrate that the convergence order of the scheme can not exceeds O2 + h3). An improved compact scheme is presented, by which the approximate values at the boundary points can be obtained directly. The second scheme was given by Liao, Zhu, and Khaliq (Methods Partial Differential Eq 22, (2006), 600–616). The unconditional stability and convergence are also shown. By the way, it is reported how to avoid computing the values at the fictitious points. Some numerical examples are presented to show the theoretical results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

16.
We propose and investigate a new simple fourth order finite difference scheme for the heat equation. Numerical simulations do confirm theoretical analysis of accuracy and stability condition.  相似文献   

17.
18.
The exact controllability and observability for a heat equation with hyperbolic memory kernel in anisotropic and nonhomogeneous media are considered. Due to the appearance of such a kind of memory, the speed of propagation for solutions to the heat equation is finite and the corresponding controllability property has a certain nature similar to hyperbolic equations, and is significantly different from that of the usual parabolic equations. By means of Carleman estimate, we establish a positive controllability and observability result under some geometric condition. On the other hand, by a careful construction of highly concentrated approximate solutions to hyperbolic equations with memory, we present a negative controllability and observability result when the geometric condition is not satisfied.  相似文献   

19.
We consider a nonlinear plate equation with thermal memory effects due to non-Fourier heat flux laws. First we prove the existence and uniqueness of global solutions as well as the existence of a global attractor. Then we use a suitable ?ojasiewicz-Simon type inequality to show the convergence of global solutions to single steady states as time goes to infinity under the assumption that the nonlinear term f is real analytic. Moreover, we provide an estimate on the convergence rate.  相似文献   

20.
We consider the existence and nonexistence of positive global solutions for the Cauchy problem,
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号