首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous work, an effective preconditioning scheme that is based upon constructing least-squares approximation cardinal basis functions (ACBFs) from linear combinations of the RBF-PDE matrix elements has shown very attractive numerical results. The preconditioner costs O(N2) flops to set up and O(N) storage. The preconditioning technique is sufficiently general that it can be applied to different types of different operators. This was applied to the 2D multiquadric method, with c~1/√N on the Poisson test problem, the preconditioned GMRES converges in tens of iterations. In this paper, we combine the RBF methods and the ACBF preconditioning technique with the domain decomposition method (DDM). We studied different implementations of the ACBF-DDM scheme and provide numerical results for N > 10,000 nodes. We shall demonstrate that the efficiency of the ACBF-DDM scheme improves dramatically as successively finer partitions of the domain are considered.  相似文献   

2.
This article discusses the use of radial basis functions in the solution of partial differential equations. In particular, an investigation of how to implement boundary conditions at material interfaces is presented. A comparison is made of solutions obtained using only radial basis functions with those obtained using either jump functions or elliptical functions in conjunction with standard radial basis functions. The purpose of adding either jump functions or elliptical functions is to alleviate the inaccurate handling of the boundary conditions at material interfaces. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
Both overlapping and nonoverlapping domain decomposition methods (DDM) on matching and nonmatching grid have been developed to couple with the meshless radial basis function (RBF) method. Example shows that overlapping DDM with RBF can achieve much better accuracy with less nodal points compared to FDM and FEM. Numerical results also show that nonmatching grid DDM can achieve almost the same accuracy within almost the same iteration steps as the matching grid case; hence our method is very attractive, because it is much easier to generate nonmatching grid just by putting blocks of grids together (for both overlapping and nonoverlapping), where each block grid can be generated independently. Also our methods are showed to be able to handle discontinuous coefficient. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 450–462, 2004.  相似文献   

4.
A new multilevel approximation scheme for scattered data is proposed. The scheme relies on an adaptive domain decomposition strategy using quadtree techniques (and their higher-dimensional generalizations). It is shown in the numerical examples that the new method achieves an improvement on the approximation quality of previous well-established multilevel interpolation schemes. AMS subject classification 65D15, 65D05, 65D07, 65D17  相似文献   

5.
Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and engineering, as they appear in various engineering models. In this work, the radial basis functions method is used for finding an unknown parameter p(t) in the inverse linear parabolic partial differential equation ut = uxx + p(t)u + φ, in [0,1] × (0,T], where u is unknown while the initial condition and boundary conditions are given. Also an additional condition ∫01k(x)u(x,t)dx = E(t), 0 ≤ tT, for known functions E(t), k(x), is given as the integral overspecification over the spatial domain. The main approach is using the radial basis functions method. In this technique the exact solution is found without any mesh generation on the domain of the problem. We also discuss on the case that the overspecified condition is in the form ∫0s(t) u(x,t)dx = E(t), 0 < tT, 0 < s(t) < 1, where s and E are known functions. Some illustrative examples are presented to show efficiency of the proposed method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

6.
A new shift‐adaptive meshfree method for solving a class of time‐dependent partial differential equations (PDEs) in a bounded domain (one‐dimensional domain) with moving boundaries and nonhomogeneous boundary conditions is introduced. The radial basis function (RBF) collocation method is combined with the finite difference scheme, because, unlike with Kansa's method, nonlinear PDEs can be converted to a system of linear equations. The grid‐free property of the RBF method is exploited, and a new adaptive algorithm is used to choose the location of the collocation points in the first time step only. In fact, instead of applying the adaptive algorithm on the entire domain of the problem (like with other existing adaptive algorithms), the new adaptive algorithm can be applied only on time steps. Furthermore, because of the radial property of the RBFs, the new adaptive strategy is applied only on the first time step; in the other time steps, the adaptive nodes (obtained in the first time step) are shifted. Thus, only one small system of linear equations must be solved (by LU decomposition method) rather than a large linear or nonlinear system of equations as in Kansa's method (adaptive strategy applied to entire domain), or a large number of small linear systems of equations in the adaptive strategy on each time step. This saves a lot in time and memory usage. Also, Stability analysis is obtained for our scheme, using Von Neumann stability analysis method. Results show that the new method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution, and the adaptive grading scheme is effective in localizing oscillations due to sharp gradients or discontinuities in the solution. The efficiency and effectiveness of the proposed procedure is examined by adaptively solving two difficult benchmark problems, including a regularized long‐wave equation and a Korteweg‐de Vries problem. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1622–1646, 2016  相似文献   

7.
Based on radial basis functions approximation, we develop in this paper a new com-putational algorithm for numerical differentiation. Under an a priori and an a posteriori choice rules for the regularization parameter, we also give a proof on the convergence error estimate in reconstructing the unknown partial derivatives from scattered noisy data in multi-dimension. Numerical examples verify that the proposed regularization strategy with the a posteriori choice rule is effective and stable to solve the numerical differential problem. *The work described in this paper was partially supported by a grant from CityU (Project No. 7001646) and partially supported by the National Natural Science Foundation of China (No. 10571079).  相似文献   

8.
In this paper, the problem of solving the one-dimensional parabolic partial differential equation subject to given initial and non-local boundary conditions is considered. The approximate solution is found using the radial basis functions collocation method. There are some difficulties in computing the solution of the time dependent partial differential equations using radial basis functions. If time and space are discretized using radial basis functions, the resulted coefficient matrix will be very ill-conditioned and so the corresponding linear system cannot be solved easily. As an alternative method for solution, we can use finite-difference methods for discretization of time and radial basis functions for discretization of space. Although this method is easy to use but an accurate solution cannot be provided. In this work an efficient collocation method is proposed for solving non-local parabolic partial differential equations using radial basis functions. Numerical results are presented and are compared with some existing methods.  相似文献   

9.
In this paper, we demonstrate a local convergence of an adaptive scalar solver which is practical for strongly diagonal dominant Jacobian problems such as in some systems of nonlinear equations arising from the application of a nonoverlapping domain decomposition method. The method is tested to a nonlinear interface problem of a multichip heat conduction problem. The numerical results show that the method performs slightly better than a Newton-Krylov method.  相似文献   

10.
The meshless local Petrov–Galerkin (MLPG) method with global radial basis functions (RBF) as trial approximation leads to a full final linear system and a large condition number. This makes MLPG less efficient when the number of data points is increased. We can overcome this drawback if we avoid using more points from the data site than absolutely necessary. In this article, we equip the MLPG method with the greedy sparse approximation technique of (Schaback, Numercail Algorithms 67 (2014), 531–547) and use it for numerical solution of partial differential equations. This scheme uses as few neighbor nodal values as possible and allows to control the consistency error by explicit calculation. Whatever the given RBF is, the final system is sparse and the algorithm is well‐conditioned. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 847–861, 2016  相似文献   

11.
This article is concerned with the use of integrated radial‐basis‐function networks (IRBFNs) and nonoverlapping domain decompositions (DDs) for numerically solving one‐ and two‐dimensional elliptic problems. A substructuring technique is adopted, where subproblems are discretized by means of one‐dimensional IRBFNs. A distinguishing feature of the present DD technique is that the continuity of the RBF solution across the interfaces is enforced with one order higher than with conventional DD techniques. Several test problems governed by second‐ and fourth‐order differential equations are considered to investigate the accuracy of the proposed technique. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

12.
A number of nonlinear phenomena in many branches of the applied sciences and engineering are described in terms of delay differential equations, which arise when the evolution of a system depends both on its present and past time. In this work we apply the Adomian decomposition method (ADM) to obtain solutions of several delay differential equations subject to history functions and then investigate several numerical examples via our subroutines in MAPLE that demonstrate the efficiency of our new approach. In our approach history functions are continuous across the initial value and its derivatives must be equal to the initial conditions (see Section 3) so that our results are more efficient and accurate than previous works.  相似文献   

13.
Gaussian radial basis functions (RBFs) have been very useful in computer graphics and for numerical solutions of partial differential equations where these RBFs are defined, on a grid with uniform spacing h, as translates of the “master” function (x;α,h)exp(-[α2/h2]x2) where α is a user-choosable constant. Unfortunately, computing the coefficients of (x-jh;α,h) requires solving a linear system with a dense matrix. It would be much more efficient to rearrange the basis functions into the equivalent “Lagrangian” or “cardinal” basis because the interpolation matrix in the new basis is the identity matrix; the cardinal basis Cj(x;α,h) is defined by the set of linear combinations of the Gaussians such that Cj(kh)=1 when k=j and Cj(kh)=0 for all integers . We show that the cardinal functions for the uniform grid are Cj(x;h,α)=C(x/h-j;α) where C(X;α)≈(α2/π)sin(πX)/sinh(α2X). The relative error is only about 4exp(-2π2/α2) as demonstrated by the explicit second order approximation. It has long been known that the error in a series of Gaussian RBFs does not converge to zero for fixed α as h→0, but only to an “error saturation” proportional to exp(-π2/α2). Because the error in our approximation to the master cardinal function C(X;α) is the square of the error saturation, there is no penalty for using our new approximations to obtain matrix-free interpolating RBF approximations to an arbitrary function f(x). The master cardinal function on a uniform grid in d dimensions is just the direct product of the one-dimensional cardinal functions. Thus in two dimensions . We show that the matrix-free interpolation can be extended to non-uniform grids by a smooth change of coordinates.  相似文献   

14.
We consider additive two‐level preconditioners, with a local and a global component, for the Schur complement system arising in non‐overlapping domain decomposition methods. We propose two new parallelizable local preconditioners. The first one is a computationally cheap but numerically relevant alternative to the classical block Jacobi preconditioner. The second one exploits all the information from the local Schur complement matrices and demonstrates an attractive numerical behaviour on heterogeneous and anisotropic problems. We also propose two implementations based on approximate Schur complement matrices that are cheaper alternatives to construct the given preconditioners but that preserve their good numerical behaviour. Through extensive computational experiments we study the numerical scalability and the robustness of the proposed preconditioners and compare their numerical performance with well‐known robust preconditioners such as BPS and the balancing Neumann–Neumann method. Finally, we describe a parallel implementation on distributed memory computers of some of the proposed techniques and report parallel performances. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
We present an Augmented Hybrid Finite Element Method for Domain Decompositon. In this method, finite element approximations are defined independently on each subdomain and do not match at interface. This dows the user to mda local change of design, of meshes on one aubdomain without modifying other subdomains. Optimal reaults are obtained for a second-order model problem.  相似文献   

16.
This paper presents a meshless method, which replaces the inhomogeneous biharmonic equation by two Poisson equations in terms of an intermediate function. The solution of the Poisson equation with the intermediate function as the right-hand term may be written as a sum of a particular solution and a homogeneous solution of a Laplace equation. The intermediate function is approximated by a series of radial basis functions. Then the particular solution is obtained via employing Kansa’s method, while the homogeneous solution is approximated by using the boundary radial point interpolation method by means of boundary integral equations. Besides, the proposed meshless method, in conjunction with the analog equation method, is further developed for solving generalized biharmonic-type problems. Some numerical tests illustrate the efficiency of the method proposed.  相似文献   

17.
The local radial basis function (RBF) method is a promising solver for variable‐order time fractional diffusion equation (TFDE), as it overcomes the computational burden of the traditional global method. Application of the local RBF method is limited to Fickian diffusion, while real‐world diffusion is usually non‐Fickian in multiple dimensions. This article is the first to extend the application of the local RBF method to two‐dimensional, variable‐order, time fractional diffusion equation in complex shaped domains. One of the main advantages of the local RBF method is that only the nodes located in the subdomain, surrounding the local point, need to be considered when calculating the numerical solution at this point. This approach can perform well with large scale problems and can also mitigate otherwise ill‐conditioned problems. The proposed numerical approach is checked against two examples with curved boundaries and known analytical solutions. Shape parameter and subdomain node number are investigated for their influence on the accuracy of the local RBF solution. Furthermore, quantitative analysis, based on root‐mean‐square error, maximum absolute error, and maximum error of the partial derivative indicates that the local RBF method is accurate and effective in approximating the variable‐order TFDE in two‐dimensional irregular domains.  相似文献   

18.
19.
We study meshless collocation methods using radial basis functions to approximate regular solutions of systems of equations with linear differential or integral operators. Our method can be interpreted as one of the emerging meshless methods, cf. T. Belytschko et al. (1996). Its range of application is not confined to elliptic problems. However, the application to the boundary value problem for an elliptic operator, connected with an integral equation, is given as an example. Although the method has been used for special cases for about ten years, cf. E.J. Kansa (1990), there are no error bounds known. We put the main emphasis on detailed proofs of such error bounds, following the general outline described in C. Franke and R. Schaback (preprint). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
In this article, integrated radial basis functions (IRBFs) are used for Hermite interpolation in the solution of differential equations, resulting in a new meshless symmetric RBF method. Both global and local approximation‐based schemes are derived. For the latter, the focus is on the construction of compact approximation stencils, where a sparse system matrix and a high‐order accuracy can be achieved together. Cartesian‐grid‐based stencils are possible for problems defined on nonrectangular domains. Furthermore, the effects of the RBF width on the solution accuracy for a given grid size are fully explored with a reasonable computational cost. The proposed schemes are numerically verified in some elliptic boundary‐value problems governed by the Poisson and convection‐diffusion equations. High levels of the solution accuracy are obtained using relatively coarse discretisations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号