首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Liquid chromatography (LC) methods compatible with mass spectrometry (MS) that are suitable for impurity profiling of vancomycin mixtures have not been described in the literature. The mobile phases of the existing methods contain non-volatile additives and/or solvents that give problems in combination with MS. In this paper, a reversed-phase LC/tandem mass spectrometry method is described for the investigation of vancomycin and related substances. The LC method uses a Zorbax Extend C18 column (250 x 4.6 mm i.d.), 5 microm, and a mobile phase consisting of methanol, water and ammonium acetate solution (pH 9.0). This method allows us to separate vancomycin and its impurities. Mass spectral data are acquired on an LCQ ion trap mass spectrometer equipped with an electrospray interface operated in the positive and negative ion modes. The LCQ is ideally suited for identification of impurities and related substances because it provides on-line LC/MSn capability, which allows efficient identification without time-consuming isolation and purification procedures. Using this method, the fragmentation of vancomycin and known derivatives was studied and the structures of six substances occurring in commercial samples were elucidated.  相似文献   

3.
Structures of seven impurities of the veterinary drug tilmicosin have been elucidated by multiple fragmentation with ion trap tandem mass spectrometry. All related compounds possess the main lactone ring of tilmicosin. The differences in their structures are due to the hydroxyl, mycaminose, 3,5-dimethylpiperidine and mycinose groups connected to C(3), C(5), C(6), C(14) of the lactone ring, respectively. The following compounds of the impurity profile of tilmicosin were identified: B - tilmicosin with a hydroxyl group at C(3); C - tilmicosin without a methyl group at the N-atom connected to C(3) of the mycaminose ring; D - tilmicosin with a hydroxyl group at C(6) of the mycaminose ring; E - tilmicosin with a methoxy group at C(3), F - desmicosin; G - 20-dihydrodesmicosin; and H - tilmicosin without a mycaminose ring. Isomers of the compounds B, C, D, E and H were identified by their mass chromatograms and retention times. The concentrations of the impurities varied in the range of 0.1% to 2.9%.  相似文献   

4.
A selective reversed-phase liquid chromatography/mass spectrometry (LC/MS(n)) method was developed for the characterization of components of the semi-synthetic macrolide clarithromycin. Mass spectral data were acquired online on a LCQ ion trap mass spectrometer equipped with an electrospray ionization source operated in the positive ion mode. One unknown compound was structurally elucidated and two other unknowns were characterized using the MS/MS and MS(n) collision-induced dissociation spectra of reference substances as interpretative templates, combined with knowledge of the nature of functional group fragmentation behaviour. Given the importance attached to the identification of impurities of unknown identity in pharmaceutical substances, this study is useful for companies producing clarithromycin.  相似文献   

5.
A reversed-phase liquid chromatography/tandem mass spectrometry method is described for the investigation of spiramycin and related substances. The method uses an XTerra C18 column (250 x 4.6 mm i.d.), 5 microm, and a mobile phase consisting of acetonitrile, methanol, water and ammonium acetate solution, pH 6.5. Mass spectral data were acquired on an LCQ ion trap mass spectrometer equipped with atmospheric pressure chemical ionization (APCI) operated in the positive ion mode. Using this method, the fragmentation behavior of spiramycin and its related substances was studied and the unknown impurities occurring in commercial samples were investigated. In total 17 compounds were identified, among which three reported as specified impurities in the European Pharmacopoeia. The other impurities showed mainly a modification in the forosamine sugar or in the substituent at C-3 and C-6 positions. In one impurity, the mycarose sugar is absent.  相似文献   

6.
In this work, the chemical constituents in Da‐Huang‐Gan‐Cao‐Tang, a traditional Chinese formula, were studied by liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry and liquid chromatography coupled with ion trap mass spectrometry for the first time. Among the 146 compounds detected in Da‐Huang‐Gan‐Cao‐Tang, 104 compounds were identified unambiguously or tentatively based on their accurate molecular weight and multistage MS data, including one potential novel compound and two reported in Glycyrrhiza genus for the first time. The possible fragmentation pathways were proposed and fragmentation rules of the major types of compounds were concluded. This study provided an example to facilitate the tedious identification of chemical composition in traditional Chinese medicine, and maybe a promising reference approach to research the analogous formulae.  相似文献   

7.
With a recently developed liquid chromatographic (LC) method, using a phosphate buffer, several unknown impurities present in dirithromycin samples were separated. In this paper, a reversed-phase liquid chromatography-tandem mass spectrometry method is described for the investigation of dirithromycin and related substances. The method employed uses a Zorbax Extend C18 column (250 mm x 4.6 mm I.D.), 5 microm, and a mobile phase consisting of acetonitrile, 2-propanol, water and ammonium acetate solution pH 8.5. Mass spectral data are acquired on an LCQ ion trap mass spectrometer equipped with an electrospray ion (ESI) source operated in the positive ion mode. The LCQ is ideally suited for the identification of related substances because it provides on-line LC/MS(n) capability, which allows efficient identification without time-consuming isolation and purification procedures. Using this method, the fragmentation behavior of dirithromycin and its related substances was studied and the unknown impurities occurring in commercial samples were investigated. In total the structures of nine impurities were elucidated, among which three were different analogues with a modification in the side chain on the oxazine ring. Two impurities showed a different alkyl group in position C13. In two impurities the desosamine sugar was involved with changes in the degrees of methylation of the amino group. One unknown impurity was identified as dirithromycin F and another unknown was characterized as dirithromycin N-oxide.  相似文献   

8.
A sensitive, precise and accurate quantitative liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the measurement of erythromycin A (EA) and related substances in commercial samples was developed and validated. The samples were chromatographed on a reversed-phase column with a polar endcapping and analyzed by ion trap tandem mass spectrometry in the multiple reaction monitoring (MRM) mode using positive electrospray ionization. The method showed high recovery (>or=98.82%), high sensitivity (lower limit of quantitation of 0.25 ng/mL for EA and less than 7.3 ng/mL for the related substances) and high precision (or=0.991) with a run time of only 13 min. The method was successfully applied to the determination of EA and related substances in commercial samples. Moreover, using the advanced data-dependent acquisition capability of the ion trap software two new unexpected EA related substances could be detected and possible structures for these substances were postulated.  相似文献   

9.
Test methods have to be developed by laboratories for official control to monitor possible misuse of veterinary drugs in animal productions, also through feeding stuff. A novel method for identification and quantification of levamisole in feeds by liquid chromatography coupled to electrospray mass spectrometry in an ion trap (LC/ESI‐MS/MS) is herein described; after a single‐step cleanup by liquid‐liquid extraction from the feed and separation by reversed‐phase liquid chromatography, levamisole was determined and unambiguously confirmed by tandem mass spectrometry, on the basis of two product ions. The method was in‐house validated, according to the Regulation 882/2004/EC, evaluating trueness, repeatability, within‐laboratory reproducibility, ruggedness, specificity, and the limit of quantification (LOQ). The method is reliable and specific for complete and complementary feeds for pigs, cattle, rabbits and poultry; very good mean recoveries (higher than 92 %) and precision (RSD values < 15.2%) were attained. The LOQ at 2.0 mg/kg was verified. Moreover, we describe how the method was developed to support Italian Police investigations regarding illegal treatments of pigs; in this case, since the drug(s) added to the feed were unknown, a preliminary untargeted analysis was performed by full scan mass spectrometry on an ion trap, from 50 up to 2000 m/z; the presence of levamisole was hypothesised, on the basis of the most abundant ion and its fragmentation pattern. Then, levamisole was unambiguously confirmed by the ion trap LC/ESI‐MS/MS method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The characterization of unknown impurities present in neomycin sulfate by liquid chromatography (LC) coupled with ion trap mass spectrometry (ITMS) is described. The volatile LC method was developed using an evaporative light scattering detector due to its lower investment and operating costs, easier operation and less maintenance than mass spectrometry. The method shows separation of neomycin B from seven potential related substances reported in the European Pharmacopoeia and several other unknown impurities. The unknown impurities were further investigated by coupling the developed LC method with ITMS. Their structures were deduced based on the fragmentation patterns obtained from reference substances. Four unknowns were identified as isomers of paromamine, LP-A, neamine and LP-B.  相似文献   

11.
12.
Cylindrospermopsin (CYN) is a toxic alkaloid‐like compound produced by some strains of cyanobacteria, procariotic organisms occurring in water blooms, observed worldwide in eutrophic lakes and drinking water reservoirs. Methods for determination of CYN in freshwater and fish muscle by liquid chromatography coupled to electrospray ion trap mass spectrometry are herein described. The performances of both methods are reported; ion trap LC/ESI‐MS/MS resulted highly selective and reliable in unambiguous identification of CYN, based on monitoring the precursor ion and three product ions. The methods developed showed satisfactory mean recoveries (higher than 63.6%) and relative standard deviations, ranging from 5.8 to 9.8%. The limits of quantification at 0.10 ng/mL in freshwaters and 1.0 ng/g in fish muscle, respectively, allow for determination of CYN also in early contamination stages. Ion trap LC/ESI‐MS/MS was successfully applied to the identification and quantification of CYN in water and cyanobacteria extracts from Lake Averno, near Naples, representing the first case of contamination described in southern Italy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Plasmatic chlorophacinone is commonly measured with liquid chromatographic assay, which convenient but lacks sensitivity and selectivity and usually requires ion pair reagents to reduce the chromatographic tailed peak. In this paper, a novel method using eluent generator reagent‐free ion chromatography coupled with electrospray ionization ion trap mass spectrometric detection for the determination of chlorophacinone in plasma has been developed. After samples were extracted with 10% (v/v) methanol in acetonitrile and cleaned by solid‐phase extraction, chromatographic separation was performed on an IonPac® AS11 analytical column (250 × 4.0 mm) using 40.0 mmol/L KOH containing 10% (v/v) methanol as organic modifier. Quantification was performed by negative electrospray ionization in multiple reaction monitoring mode. The transition m/z 373 → 201 was for the quantification ion; the transitions m/z 373 → 172 and m/z 373 → 145, as well as the isotope ions m/z 375 and m/z 203, were for the qualitative ions. All the method parameters were validated. It was confirmed that this method can be used in clinical diagnosis and forensic toxicology. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, rapid‐resolution liquid chromatography (RRLC) coupled to electrospray ionization time‐of‐flight mass spectrometry (ESI‐TOF‐MS) and ion trap multiple mass spectrometry (IT‐MSn) has been applied to separate and characterize eleven isomers of oleuropein aglycon in fourteen Spanish extra‐virgin olive oils. After the extra‐virgin olive oil sample had been dissolved in hexane and cleaned up by a diol‐bonded phase solid‐phase extraction (SPE) cartridge, the eluting extract was resolved in methanol and analyzed on an Angilent 1200 system with a 4.6 × 150 mm, 1.8 µm Zorbax Eclipse plus C18 column. Mass spectrometry was carried out on a Bruker Daltonics microTOF mass spectrometer and a Bruker Daltonics ion trap mass spectrometer. The characterization of isomers of oleuropein aglycon was based on accurate mass data and the isotope function of characteristic fragment ions in the studied compounds by TOF‐MS, and the fragment ions were further confirmed by IT‐MSn. The fragmentation pathway of oleuropein aglycon was successfully elucidated and all possible transformations among isomers of oleuropein aglycon were suggested. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time‐of‐flight MS coupled with LC (LC‐IT‐TOF‐MS) has successfully integrated ease of operation, compatibility with LC flow rates and data‐dependent MSn with high mass accuracy and mass resolving power. The MSn and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC‐IT‐TOF‐MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT‐TOF instrument. Then, a general workflow for metabolite profiling using LC‐IT‐TOF‐MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC‐IT‐TOF‐MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Salvianolic acid A (SalA) is one of the main active constituents in Salvia miltiorrhiza (Danshen). Although the pharmacokinetics of SalA in rats after intravenous (i.v.) administration of Danshen injection has been reported, the information relevant to the metabolites of SalA in vivo is absent so far. In this study, by means of liquid chromatography with time‐of‐flight mass spectrometry (LC/TOFMS) and liquid chromatography with ion trap mass spectrometry (LC/MSn) techniques, the unknown metabolites of SalA in rat plasma after i.v. administration of the purified SalA at the dose of 20 mg/kg body weight were identified. A liquid‐liquid extraction method was established to separate the metabolites from the plasma and the chromatographic separations were performed on a Xterra MS C18 column (100 mm × 4.6 mm i.d., 3.5 µm) with acetonitrile/methanol/water/formic acid (20.5:19.5:64: 0.05, v/v/v/v) as the mobile phase at a constant flow rate of 0.2 mL/min. Based on the data obtained from the LC/TOFMS determination (the total ion chromatograms, MS spectra and extracted ion chromatograms), in combination with the characteristic fragment ions acquired from the LC/MSn determination, five metabolites were identified as SalA‐monoglucuronide, monomethyl‐SalA‐monoglucuronide, mono‐methyl‐SalA, dimethyl‐SalA and dimethyl‐SalA‐monoglucuronide, and the possible chemical structures were deduced. The results indicated that SalA might mainly undergo two metabolic pathways in vivo in rats, which were methylation and glucuronidation. The present studies have laid a solid foundation for the metabolic mechanism of SalA in vivo. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A liquid chromatography mass spectrometry (LC-MS) method is proposed for the sensitive, specific and direct detection of yessotoxin and its analogues, marine biotoxins which are associated with diarrhetic shellfish poisoning (DSP) and which have been found in the North Adriatic sea since 1995. The LC-MS method provided a detection limit of 70 pg for yessotoxin in full scan mode and was applied to determine the toxic profiles of a number of extracts or partially purified fractions of toxic mussels collected along the Emilia Romagna coasts (Italy) in the period 1995-1999. Detection of a desulfo-yessotoxin derivative from Mytilus galloprovincialis collected in 1998 is also reported.  相似文献   

18.
A selective reversed-phase liquid chromatography/mass spectrometry (LC/MS(n)) method is described for the identification of azithromycin impurities and related substances in commercial azithromycin samples. Mass spectral data are acquired on an LCQ ion trap mass spectrometer equipped with an atmospheric pressure chemical ionization interface operated in positive ion mode. The LCQ provides on-line LC/MS(n) capability, making it ideally suited for identification purposes. In comparison with UV detection, this hyphenated technique provides as its main advantage efficient identification of novel substances without time-consuming isolation and purification procedures. Using this technique, six novel related substances detected in commercial azithromycin samples have been studied.  相似文献   

19.
A precise and reliable method, using liquid chromatography combined with ion trap based mass spectrometry, for the determination of three endogenous estrogens, namely, estrone, estradiol, and estriol, and two synthetic estrogens, ethinyl estradiol and diethylstilbestrol, in environmental water samples was developed. Optimization of the parameter settings of the ion source and mass analyzer as well as evaluation of solvent composition were carried out by continuous introduction of standards through a syringe pump. In negative ion mode the electrospray ionization source gave acceptable results. The optimum solvent used consisted of water/acetonitrile, with no volatile bases or buffers added. A simple, off-line, manual solid-phase extraction method was developed for sample preparation of environmental water samples. Recoveries were over 86% for all compounds. The method was validated and found to be linear, selective, and robust. For analysis of a 50-mL sample, the limit of detection (LOD) ranged from 3.2 to 10.6 ng/L for all compounds, and the limit of quantitation (LOQ) from 10.6 to 35.0 ng/L. Within-day (n = 5) and total (n = 5) reproducibility were investigated at three different concentration levels and ranged from 6.2 to 9.5% and 9.4 to 12.1%, respectively. Finally, the method was applied to real-world samples.  相似文献   

20.
Glutathione S-transferases (GSTs) isolated from maize were used to catalyze the conjugation of glutathione (GSH) with chloroacetanilide herbicides, producing stable conjugates that were structurally characterized using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QqToF-MS) and liquid chromatography/ion trap mass spectrometry (LC/IT-MS). Enzyme-mediated dechlorination of alachlor, metolachlor, and propachlor resulted during GSH conjugation as revealed by the mass spectra of the conjugates, which was confirmed by the loss of the chlorine isotopic signature and from high accurate mass measurements. Several fragmentation patterns in the mass spectra of the chloroacetanilide-GSH conjugates can be used to verify the identities of the enzyme reaction products, such as characteristic ions corresponding to the neutral loss of glutamic acid residue (129 Da) and water (18 Da) observed in the product ion spectrum. For the first time, data are presented showing detection of chloroacetanilides that are conjugated with two GSH molecules, in addition to the known single GSH conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号