首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this study, the screening steps of chiral separation strategies with polysaccharide‐based chiral stationary phases were applied on boron cluster compounds in normal‐phase liquid chromatography (NPLC) and polar organic solvents chromatography (POSC). Since the screening steps were initially developed to analyze organic compounds, their applicability for boron clusters was investigated. Overall, the screening steps in NPLC were applicable for the separation of zwitterions, while for anions mostly no elution was observed. A hypothesis for the latter behavior is precipitation of anions in the nonpolar mobile phases. Ten out of 11 compounds could be partially or baseline separated on the NPLC screening systems. In POSC, all zwitterions were separated on at least one of the screening systems, with an overall lower retention as in NPLC. Anions were detected but not separated in the majority of the experiments. Also their retention on the chiral stationary phases was very limited. This study showed that the chiral discrimination potential of chemically modified polysaccharides is meaningful for chiral separations of structurally chiral boron cluster species, but needs further systematic research, in which recognition mechanisms should be further explored. In addition, some unusual peaks also indicated that conditions with a high separation efficiency must first be searched for some of the tested systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, a series of chiral stationary phases based on N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine amide, whose enantiorecognition property has never been studied, were synthesized. Their enantioseparation abilities were chromatographically evaluated by 67 enantiomers. The chiral stationary phase derived from N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine showed much better enantioselectivities than that based on N‐(4‐methylbenzoyl)‐l ‐leucine amide. The construction of C2 symmetric chiral structure greatly improved the enantiorecognition performance of the stationary phase. The C2 symmetric chiral stationary phase exhibited superior enantioresolutions to other chiral stationary phases for most of the chiral analytes, especially for the chiral analytes with C2 symmetric structures. By comparing the enantioseparations of the enantiomers with similar structures, the importance of hydrogen bond interaction, π–π interaction, and steric hindrance on enantiorecognition was elucidated. The enantiorecognition mechanism of transN,N′‐(1,2‐diphenyl‐1,2‐ethanediyl)bis‐acetamide, which had an excellent separation factor on the C2 symmetric chiral stationary phase, was investigated by 1H‐NMR spectroscopy and 2D 1H‐1H nuclear overhauser enhancement spectroscopy.  相似文献   

3.
A simple and environmentally friendly reversed‐phase high‐performance liquid chromatography method for the separation of the enantiomers of lansoprazole has been developed. The chromatographic resolution was carried out on the cellulose‐based Chiralpak IC‐3 chiral stationary phase using a green and low‐toxicity ethanol‐aqueous mode. The effects of water content in the mobile phase and column temperature on the retention of the enantiomers of lansoprazole and its chiral and achiral related substances have been carefully investigated. A mixed‐mode hydrophilic interaction liquid chromatography and reversed‐phase retention mechanism operating on the IC‐3 chiral stationary phase allowed us to achieve simultaneous enantioselective and chemoselective separations in water‐rich conditions. The enantiomers of lansoprazole were baseline resolved with a mobile phase consisting of ethanol/water 50:50 without any interference coming from chiral and achiral impurities within 10 min.  相似文献   

4.
Chromatographic performance of a chiral stationary phase is significantly influenced by the employed solid support. Properties of the most commonly used support, silica particles, such as size and size distribution, and pore size are of utmost importance for both superficially porous particles and fully porous particles. In this work, we have focused on evaluation of fully porous particles from three different vendors as solid supports for a brush‐type chiral stationary phase based on 9‐Otert‐butylcarbamoyl quinidine. We have prepared corresponding stationary phases under identical experimental conditions and determined the parameters of the modified silica by physisorption measurements and scanning electron microscopy. Enantiorecognition properties of the chiral stationary phases have been studied using preferential sorption experiments. The same material was slurry‐packed into chromatographic columns and the chromatographic properties have been evaluated in liquid chromatography. We show that preferential sorption can provide valuable information about the influence of the pore size and total pore volume on the interaction of analytes of different size with the chirally‐modified silica surface. The data can be used to understand differences observed in chromatographic evaluation of the chiral stationary phases. The combination of preferential sorption and liquid chromatography separation can provide detailed information on new chiral stationary phases.  相似文献   

5.
Oligoproline chiral stationary phase (CSP) is a new class peptide chiral stationary phase. Many proline chiral stationary phases with different proline chain lengths and linkers have been prepared and evaluated. However, the doubly tethered and ionic type linkers have not been adequately investigated. In this study, covalently and ionically bonded chiral stationary phases with doubly tethered linker were prepared and characterized. The new covalently bonded doubly tethered diproline CSP was applied successfully to resolve various enantiomers of acidic, basic, and neutral compounds with phenyl, naphthyl, anthryl, or similarly sized groups. The enantiorecognition performances of singly and doubly tethered diproline CSPs were comparable. Variation of the type and content of organic modifiers in hexane or heptane mobile phase showed that the branch alcohols such as 2‐propanol and 2‐butanol, 1,2‐dichloroethane, methyl tert‐butyl ether, and ethyl acetate in the mobile phase enhanced chiral separation. End‐capping on doubly tethered diproline CSP did not always improve the separation factor and resolution. Due to the rigid structure of the double tether, the enantioseparation ability of ionically bonded diproline CSP was well expressed to some analytes.  相似文献   

6.
This paper presents a multi‐residue method for direct enantioselective separation of chiral pharmacologically active compounds in environmental matrices. The method is based on chiral liquid chromatography and tandem mass spectrometry detection. Simultaneous chiral discrimination was achieved with a macrocyclic glycopeptide‐based column with antibiotic teicoplanin as a chiral selector working under reverse phase mode. For the first time, enantioresolution was reported for metabolites of ibuprofen: carboxyibuprofen and 2‐hydroxyibuprofen with this chiral stationary phase. Moreover, enantiomers of chloramphenicol, ibuprofen, ifosfamide, indoprofen, ketoprofen, naproxen and praziquantel were also resolved. The overall performance of the method was satisfactory in terms of linearity, precision, accuracy and limits of detection. The method was successfully applied for monitoring of pharmacologically active compounds at enantiomeric level in influent and effluent wastewater and in river water. In addition, the chiral recognition and analytical performance of the teicoplanin‐based column was critically compared with that of the α1‐acid glycoprotein chiral stationary phase. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Two liquid chromatographic chiral stationary phases based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid were applied to the resolution of the amide derivatives of cyclic α‐amino acids including proline and pipecolic acid. Among the five amide derivatives of proline, aniline amide was resolved best on the first chiral stationary phase, which contains two N–H tethering amide groups, with the separation factor of 1.31 and the resolution of 2.60, and on the second chiral stationary phase, which contains two N–CH3 tethering amide groups, with the separation factor of 1.57 and the resolution of 5.50. Among the five amide derivatives of pipecolic acid, 2‐naphthyl amide was resolved best on the first chiral stationary phase with the separation factor of 1.30 and the resolution of 1.75, but 1‐naphthylmethyl amide was resolved best on the second chiral stationary phase with the separation factor of 1.30 and the resolution of 2.26. In general, the second chiral stationary phase was found to be better than the first chiral stationary phase in the resolution of the amide derivatives of cyclic α‐amino acids. In this study, the second chiral stationary phase was first demonstrated to be useful for the resolution of secondary amino compounds.  相似文献   

8.
A new reciprocal π‐basic chiral stationary phase (CSP) was designed based on the reciprocity conception of chiral recognition and prepared starting from (S)‐leucine. The CSP thus prepared was applied in resolving various π‐acidic N‐(3,5‐dinitrobenzoyl)‐α‐amino amides and esters and found to be very effective. Especially, N‐(3,5‐dinitrobenzoyl)‐α‐amino N,N‐dialkyl amides were resolved very well on the new reciprocal CSP. From the chromatographic resolution results and based on the reciprocity conception of chiral recognition with the aid of Corey/Pauling/Koltan (CPK) molecular model studies, a chiral recognition mechanism which utilizes π‐π interaction and simultaneously two hydrogen bonding interactions between the CSP and the analyte has been proposed. The CSP prepared in this study was also successful in resolving 3,5‐dinitrophenylcarbamate derivatives of 2‐hydroxycarboxylic acid esters.  相似文献   

9.
建立了以多糖衍生物为手性固定相的高效液相色谱-串联质谱(HPLC-MS/MS)直接拆分氰戊菊酯对映体的方法。在反相液相色谱条件下,考察了手性固定相的种类、流动相组成、柱温、流速对氰戊菊酯4个立体异构体分离的影响。同时,利用热力学方法对氰戊菊酯的立体异构体与固定相之间的色谱保留和分离的热力学机理进行了探讨。结果表明:采用Lux Cellulose-3(纤维素-三(4-甲基苯甲酸酯))手性色谱柱,在以流动相为乙腈-水(5 mmol/L甲酸铵)=(55:45,V:V)流速0.4 mL/min,柱温30℃的条件下,可在14 mins内实现氰戊菊酯4个立体异构体的基线分离。拓展了HPLC-MS/MS在菊酯类手性农药对映体分离及检测上的应用。  相似文献   

10.
Cellulose tris(4-methylphenylcarbamate),amylose tris(3,5-dimethylphenylcarbamate) and amylose tris (phenylcarbamate) were prepared by the method reported by Okamoto and were coated onto an aminopropylated mesoporous spherical silica gel.These final products were used as chiral stationary phases of high performance liquid chromatography for the eighteen structurally related biphenyl compounds.The resolution was made using normal-phase methodology with a mobile phase consisting of n-hexane-alcohol(ethanol,1-propanol,2-propanol or 1-butanol).The effects of various aliphatic alcohols in the mobile phase were studied.The structural features of the solutes that influence their k′ were discussed.A dominant effects of trifluoroacetic acid on chiral separation of acidic solutes was noted.  相似文献   

11.
Selenium-bridged bis(β-cyclodextrin)s organic–inorganic hybrid silica material with regular spherical shape as new type of chiral stationary phase was directly synthesized under the one-pot hydrothermal synthesis method, and the chiral stationary phase was further characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetry, and elemental analysis. The results of chiral separation showed that eight chiral compounds including various types of chiral alcohols and flavanone were successfully separated in the reversed-phase separation mode by high performance liquid chromatography, which showed the better chiral resolution effect than that on the C2 position of single β-cyclodextrin. The mechanism of chiral separation was likely due to multiple interactions such as inclusion, hydrogen bonding, electrostatic interaction, dipole–dipole interaction, and the synergistic effect of two cyclodextrins during the chiral resolution process. The synergy of the two cyclodextrins has great potential for development in chiral resolution.  相似文献   

12.
13.
In this work, a novel allylimidazolium-bridged bis(β-cyclodextrin) chiral stationary phase was fabricated via a surface-up thiol-ene click chemistry reaction between 7-SH-β-cyclodextrin and 1-allylimidazole-β-cyclodextrin bonded on a silica surface. The structure of the allylimidazolium-bridged bis(β-cyclodextrin) chiral stationary phase was characterized by Fourier transform infrared spectra, 13C nuclear magnetic resonance, thermogravimetric analysis, and elemental analysis. Its chiral chromatographic performances were systematically evaluated by separating 35 racemic analytes including isoxazolines, dansyl-amino acids, and flavanones under reversed-phase high-performance liquid chromatography. Compared with the corresponding bottom and top layer of the β-cyclodextrin stationary phase, the allylimidazolium-bridged bis(β-cyclodextrin) chiral stationary phase afforded significantly accentuated chiral recognition ability due to its abundant hydrogen bond sites, electrostatic interactions, and synergistic inclusion. Furthermore, the allylimidazolium-bridged bis(β-cyclodextrin) chiral stationary phase showed better enantioseparation ability compared to other reported bridged cyclodextrin stationary phases. In particular, Ar-Phs and dansyl-amino acid could be completely separated by allylimidazolium-bridged bis(β-mono-6A-deoxy-6-allylimidazolium-β-cyclodextrin chiral stationary phase) chiral stationary phase with high resolutions of 1.14–7.20 and 3.16–5.82, respectively. Molecular docking reveals that good enantioseparation ability arises from the different interaction modes and the synergistic effect of allylimidazolium-bridged bis(β-cyclodextrin) chiral stationary phase.  相似文献   

14.
《Electrophoresis》2018,39(2):348-355
A new single‐urea‐bound chiral stationary phase based on 3,5‐dimethylphenylcarbamoylated β‐cyclodextrin was prepared through the Staudinger reaction of mono (6A‐azido‐6A‐deoxy)‐per(3,5‐dimethylphenylcarbamoylated) β‐cyclodextrin and 3‐aminopropyl silica gel under CO2 atmosphere. The new phase exhibited good enantioseparation performance for 33 analytes using normal‐phase HPLC conditions; 19 of them were baseline separated. Effects of structure of analytes, alcoholic modifiers, and acidic/basic additives on separation performances of this new cyclodextrin chiral stationary phase have been studied in detail. The results showed that the retention and resolution of acidic and basic analytes on the CSP were greatly affected by the additives. Peak symmetry for some analytes could be improved by simultaneously adding acidic and basic additives to the mobile phase. This work expands the potential applications of the cyclodextrin‐based chiral stationary phases in the normal‐phase HPLC.  相似文献   

15.
A new platform technology for the preparation of stable chiral stationary phases was successfully optimized. The chiral selector tert‐butylcarbamoylquinine was firstly covalently connected to the polymer poly(3‐mercaptopropyl)methylsiloxane by thiol‐ene click reaction. Secondly, the quinine carbamate functionalized polysiloxane conjugate was coated onto the surface of vinyl modified silica particles and cross‐linked via thiol‐ene click reaction. The amount of polysiloxane, chiral selector, radical initiator, reaction solvent (chloroform and methanol), reaction time, and pore size of the supporting silica particles were varied and systematically optimized in terms of achievable plate numbers while maintaining simultaneously enantioselectivity. The optimization was based on elemental analysis data, chromatographic results, and H/u‐curves (Van Deemter) of the resultant chiral stationary phases. The results suggest that better chromatographic efficiency (higher plate numbers) at equal enantioselectivity can be achieved with methanol (a poor solvent for the polysiloxane that is dispersed rather than dissolved) and a lower film thickness of quinine carbamate functionalized polysiloxane. In this study, chiral stationary phases based on 100 Å silica slightly outperformed 200 Å silica particles (each 5 μm). The optimized two step material exhibited significantly reduced mass transfer resistance compared to the one step material and equal performance as a brush‐type chiral stationary phase.  相似文献   

16.
The field of chiral separations had a modest beginning some two decades ago. However, due to rapid technological advancement coupled with simultaneous availability of innovative chiral stationary phases and novel chiral derivatization agents, the field of chiral separations has now totally outpaced many other separation fields. Keeping pace with rapid changes in the field of chiral separations, investigators continue to add stereoselective pharmacokinetic, pharmacodynamic, pharmacologic and toxicological data of new and/or marketed racemic compounds to the literature. Examination of the evolution of chiral separations suggests that in the beginning many investigators attempted to separate and quantify a single pair of enantiomers, adopting either direct (separation made on a chiral stationary phase) or indirect (separation made following precolumn conversion of enantiomers to corresponding diastereomers) approaches. However, more recent trends in chiral separations suggest that investigators are attempting to separate and quantify multiple pairs of enantiomers with available technologies. Added to this, some interesting trends have been observed in many of the recently reported chiral applications, including preferences regarding internal standard selection, mobile phase contents and composition, sorting out issues with mass spectrometric detection, determination of elution order, analytical manipulations of metabolite(s) without reference standards and addressing some specificity-related issues. This review mainly focuses on chiral separations involving multiple chiral analytes and attempts to justify the need for such chiral separations involving multiple analytes. In this context, several cases studies are described on the utility and applicability of such chiral separations under discrete headings to provide an account to the readership on the implications of such tasks. The topics of case studies covered in this review include: (a) therapy markers--differentiation from drug abuse and/or applicability in forensics; (b) role in pharmacogenetic/polymorphic evaluation; (c) monitoring and understanding the role of parent and active metabolite(s) in clinical and preclinical investigations; (d) exploration on the pharmacokinetic utility of an active chiral metabolite vis-a-vis the racemic parent moiety; (e) understanding the chirality play in delineating peculiar toxic effects; (f) exploration of chiral inversion phenomenon, and understanding the role of stereoselective metabolism. For the further benefit of readership, some select examples (n = 19) of the separation of multiple chiral analytes with appropriate information on chromatography, detection system, validation parameters and applicable conclusion are also provided. Finally, the review covers some useful considerations for method development involving multiple chiral analytes.  相似文献   

17.
An efficient two‐step method has been developed for the separation of β‐cypermethrin stereoisomers by supercritical fluid chromatography with polysaccharide chiral stationary phases. With respect to retention, selectivity, and resolution of β‐cypermethrin, the effects of chiral stationary phases, cosolvents, mobile phases, and column temperature have been studied in detail. Through a two‐step separation, β‐cypermethrin was firstly separated by using a cellulose‐derived chiral stationary phase to obtain two stereoisomeric pairs, and further resolved on an amylose‐based chiral stationary phase to produce four enantiopure stereoisomers. The electronic circular dichroism patterns of the first‐ and the third‐eluted isomers in methanol solution showed the mirror image of each other in the wavelength range 200∼300 nm, indicating that they were a pair of enantiomers. Moreover, the second‐ and the fourth‐eluted isomers were also enantiomers. This proposed two‐step strategy showed low solvent consumption, fast separation speed, and high‐purity, which may provide an effective approach for preparative separation of compounds with multiple chiral centers and difficult‐to‐separate multicomponent samples.  相似文献   

18.
19.
采用包夹聚合法,将硅小球同硅烷化试剂反应制得乙烯基硅胶,然后将该乙烯基硅胶同经十一烯酰氯、4-甲基苯甲酰氯衍生的纤维素共聚,制备出含不同官能团的聚合物包夹硅基的键合型纤维素(4-甲基苯甲酸酯)类手性固定相。分别以正己烷异丙醇、正己烷四氢呋喃为流动相,对此键合型手性固定相的手性识别能力进行了评价。为了与同类型的涂敷型纤维素(4-甲基苯甲酸酯)手性固定相作比较,合成了涂敷型纤维素(4-甲基苯甲酸酯)手性固定相。结果表明,键合型纤维素(4-甲基苯甲酸酯)手性固定相具有一定的手性识别能力,可以拆分所研究的6种手性化合物中的4种。  相似文献   

20.
The resolving power of a new commercial polysaccharide‐based chiral stationary phase, Sepapak‐4, with cellulose tris(4‐chloro‐3‐methylphenylcarbamate) coated on silica microparticles as chiral selector, was evaluated toward the enantioseparation of ten basic drugs with widely different structures and hydrophobic properties, using ACN as the main component of the mobile phase. A multivariate approach (experimental design) was used to screen the factors (temperature, n‐hexane content, acidic and basic additives) likely to influence enantioresolution. Then, the optimization was performed using a face‐centered central composite design. Complete enantioseparation could be obtained for almost all tested chiral compounds, demonstrating the high chiral discrimination ability of this chiral stationary phase using polar organic mobile phases made up of ACN and containing an acidic additive (TFA or formic acid), 0.1% diethylamine and n‐hexane. These results clearly illustrate the key role of the nature of the acidic additive in the mobile phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号