首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a combined EI/FI source for gas chromatography/orthogonal acceleration time‐of‐flight mass spectrometry (GC/oaTOFMS). In general, EI (electron ionization) and FI (field ionization) mass spectra are complementary: the EI mass spectrum contains information about fragment ions, while the FI mass spectrum contains information about molecular ions. Thus, the comparative study of EI and FI mass spectra is useful for GC/MS analyses. Unlike the conventional ion sources for FI and EI measurements, the newly developed source can be used for both measurements without breaking the ion source vacuum or changing the ion source. Therefore, the combined EI/FI source is more preferable than the conventional EI or FI ion source from the viewpoint of the reliability of measurements and facility of operation. Using the combined EI/FI source, the complementarity between EI and FI mass spectra is demonstrated experimentally with n‐hexadecane (100 pg): characteristic fragment ions for the n‐alkane such as m/z 43, 57, 71, and 85 are obtained in the EI mass spectrum, while only the parent peak of m/z 226 (M+) without any fragment ions is observed in the FI mass spectrum. Moreover, the field desorption (FD) measurement is also demonstrated with poly(ethylene glycol)s M600 (10 ng) and M1000 (15 ng). Signals of [M+H]+, [M+Na]+ and [M+K]+ are clearly detected in the FD mass spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Many metabolomic applications use gas chromatography/mass spectrometry (GC/MS) under standard 70 eV electron ionization (EI) parameters. However, the abundance of molecular ions is often extremely low, impeding the calculation of elemental compositions for the identification of unknown compounds. On changing the beam‐steering voltage of the ion source, the relative abundances of molecular ions at 70 eV EI were increased up to ten‐fold for alkanes, fatty acid methyl esters and trimethylsilylated metabolites, concomitant with 2‐fold absolute increases in ion intensities. We have compared the abundance, mass accuracy and isotope ratio accuracy of molecular species in EI with those in chemical ionization (CI) with methane as reagent gas under high‐mass tuning. Thirty‐three peaks of a diverse set of trimethylsilylated metabolites were analyzed in triplicate, resulting in 342 ion species ([M+H]+, [M–CH3]+ for CI and [M]+ . , [M–CH3]+ . for EI). On average, CI yielded 8‐fold more intense molecular species than EI. Using internal recalibration, average mass errors of 1.8 ± 1.6 mm/z units and isotope ratio errors of 2.3 ± 2.0% (A+1/A ratio) and 1.7 ± 1.8% (A+2/A ratio) were obtained. When constraining lists of calculated elemental compositions by chemical and heuristic rules using the Seven Golden Rules algorithm and PubChem queries, the correct formula was retrieved as top hit in 60% of the cases and within the top‐3 hits in 80% of the cases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Triacetone triperoxide (TATP), which is used as an explosive in acts of terrorism, was measured by means of gas chromatography/multiphoton ionization/time‐of‐flight mass spectrometry using a deep‐ultraviolet (deep‐UV) femtosecond laser as an ionization source. The fragmentation process was investigated by changing the intensity of the laser at the center axis of a molecular beam. A molecular ion was observed using a femtosecond laser, and the ratio of the intensities of the molecular and fragment ions decreased as the intensity of the laser increased. These results suggest that TATP can be efficiently ionized using a deep‐UV, ultrashort optical pulse. Furthermore, fragmentation was accelerated by excess energy supplied through higher‐order multiphoton processes under a strong radiation field. The detection limits obtained using the molecular ion and two dominant fragment ions, C2H3O+ and CH, were determined to be 670, 83 and 150 pg, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
6.
7.
8.
This paper focuses on development of time‐of‐flight (TOF) mass spectrometry in response to the invention of matrix‐assisted laser desorption/ionization (MALDI). Before this breakthrough ionization technique for nonvolatile molecules, TOF was generally considered as a useful tool for exotic studies of ion properties but was not widely applied to analytical problems. Improved TOF instruments and software that allow the full potential power of MALDI to be applied to difficult biological applications are described. A theoretical approach to the design and optimization of MALDI‐TOF instruments for particular applications is presented. Experimental data are provided that are in excellent agreement with theoretical predictions of resolving power and mass accuracy. Data on sensitivity and dynamic range using kilohertz laser rates are also summarized. These results indicate that combinations of high‐performance MALDI‐TOF and TOF‐TOF with off‐line high‐capacity separations may ultimately provide throughput and dynamic range several orders of magnitude greater than those currently available with electrospray LC‐MS and MS‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A method combining gas chromatography with quadrupole time‐of‐flight mass spectrometry has been developed for the simultaneous analysis of multiple pesticide residues in tobacco leaf. The retention index and high accurate masses of ions from the first‐stage and the second‐stage mass spectra of each pesticide were collected for qualitation and quantification. A total of 115 pesticides were evaluated. The extract from organic tobacco leaf was used as a model matrix. The limit of detection was <10 ng/mL, and the limit of quantification was in the range of 1–20 ng/mL for 95% of the tested pesticides. The correlation coefficients were >0.9900 for all tested pesticides. At three concentrations (10, 50, and 100 ng/mL), most compounds presented satisfactory recoveries ranging from 70 to 120% and good precision <20%. Finally, three tobacco leaf samples collected from a local market were analyzed. A total of three pesticides were found, including dimethachlon, triadimenol, and flumetralin. Each pesticide was confirmed by the presence of three ions at the expected retention index and mass. In conclusion, gas chromatography with quadrupole time‐of‐flight mass spectrometry appears to be one of the most efficient tools for the analysis of pesticide residues in tobacco leaf.  相似文献   

10.
11.
12.
In this work, gas chromatography tandem with electron ionization and full‐scan high‐resolution mass spectrometry with a time‐of‐flight mass analyzer was evaluated for analyzing pesticide residues in teas. The relevant aspects for mass spectrometry analysis, including the resolution and mass accuracy, acquisition rate, temperature of ion source, were investigated. Under acquisition condition in 2‐GHz extended dynamic range mode, accurate mass spectral library including 184 gas chromatography detectable pesticides was established and retrieval parameters were optimized. The mass spectra were consistent over a wide concentration range (three orders) with good match values to those of NIST (EI‐quadrupole). The methodology was verified by the validation of 184 pesticides in four tea matrices. A wide linear range (1–1000 μg/kg) was obtained for most compounds in four matrices. Limit of detection, limit of quantification, and limit of identification values acquired in this study could satisfy the requirements for maximum residue levels prescribed by the European Community. Recovery studies were performed at three concentrations (10, 50, and 100 μg/kg). Most of the analytes were recovered at an acceptable range of 70–120% with relative standard deviations ≤ 20% in four matrices. The potential extension of qualitative screening scope makes gas chromatography tandem with electron ionization and mass spectrometry with a time‐of‐flight mass analyzer a more powerful tool compared with gas chromatography with tandem mass spectrometry.  相似文献   

13.
Hepcidin is known to be a key systemic iron‐regulatory hormone which has been demonstrated to be associated with a number of iron disorders. Hepcidin concentrations are increased in inflammation and suppressed in hemochromatosis. In view of the role of hepcidin in disease, its potential as a diagnostic tool in a clinical setting is evident. This study describes the development of a matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) assay for the quantitative determination of hepcidin concentrations in clinical samples. A stable isotope labeled hepcidin was prepared as an internal standard and a standard quantity was added to urine samples. Extraction was performed with weak cation‐exchange magnetic nanoparticles. The basic peptides were eluted from the magnetic nanoparticles using a matrix solution directly onto a target plate and analyzed by MALDI‐TOF MS to determine the concentration of hepcidin. The assay was validated in charcoal stripped urine, and good recovery (70–80%) was obtained, as were limit of quantitation data (5 nmol/L), accuracy (RE <10%), precision (CV <21%), within ‐day repeatability (CV <13%) and between‐day repeatability (CV <21%). Urine hepcidin levels were 10 nmol/mmol creatinine in healthy controls, with reduced levels in hereditary hemochromatosis (P < 0.000005) and elevated levels in inflammation (P < 0.0007). In summary a validated method has been developed for the determination of hepcidin concentrations in clinical samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Analysis of pesticide residues in water and food matrices is an active research area closely related to food safety and environmental issues. In this aspect mass spectrometry (MS) coupled to gas chromatography (GC) and liquid chromatography (LC) has been increasingly used in the analysis of pesticide residues in water and food. The increasing interest in application of high‐resolution mass spectrometry with time‐of‐flight (TOF) and hybrid triple quadrupole TOF in pesticide analysis is due to its capability of performing both targeted and nontargeted analysis. This article discusses an overview of the application of GC‐TOF‐MS and LC‐TOF‐MS in water and food matrices.  相似文献   

15.
A technique using comprehensive two‐dimensional gas chromatography/time‐of‐flight mass spectrometry (GC × GC/TOFMS) is applied to qualitative and quantitative drug testing. Human serum was ‘spiked’ with known quantities of benzodiazepines and a ‘street heroin’ mixture including some of the major metabolites and impurities. The sample components were extracted from the matrix by solid‐phase extraction (SPE). Constituents containing polar hydroxyl and/or secondary amine groups were derivatised with N‐methyl‐N‐(tert‐butyldimethyl)trifluoroacetamide (MTBSTFA) to improve the chromatographic performance. An orthogonal separation of the matrix constituents was achieved by coupling a DB‐5ms (5% phenyl) to a BPX50 (50% phenyl) GC column. The eluant was focused onto the second column by a twin‐stage cryo‐modulator. Rapid 6 s modulation times were achieved by transfer from a 30 m × 0.25 mm (length × internal diameter) to a 2 m × 0.1 mm column. TOFMS with rapid spectral acquisition (≤500 spectra/s) was employed in the mass range m/z 40–650. A clean mass spectrum was obtained for each analyte using mass spectral deconvolution software. The sensitivity and repeatability of the method were evaluated by the preparation of calibration standards for two benzodiazepines, flunitrazepam and its major metabolite 7‐aminoflunitrazepam (7‐amino‐FN), in the concentration range 5–1000 ng/mL. The limits of detection (LODs) and limits of quantitation (LOQs), calculated by repeat injections (×10) of the lowest standard, were 1.6 and 5.4 ng/mL (flunitrazepam); 2.5 and 8.5 ng/mL (7‐amino‐FN), respectively. There is scope to extend this protocol to screen a large number of drugs and metabolites stored in a library database. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Because of the extreme complexity of metabolomic samples, the effectiveness of quantitative gas chromatography with time‐of‐flight mass spectrometry depends substantially on the expansion of the linear dynamic range. Facing the existence of numerous saturated detector signals, a data processing method based on monitoring isotopologues has been developed. The monoisotopic ion kept the high mass spectrometry sensitivity, and the less abundant isotopologue ions extended the linear dynamic range. This alternative method was proved to extend the linear dynamic range to five orders of magnitude successfully and overcome the quantitative problems induced by the ion detector saturation. Finally, to validate the applicability, the method was applied to a metabolomic assay of Alzheimer's disease. Comparing with the traditional monoisotopic method, the use of monitoring isotopologues helped us to discover an additional eight metabolites with significant difference and to conduct a more reliable principal component analysis as well. The results demonstrated that monitoring isotopologues in quantitative gas chromatography with time‐of‐flight mass spectrometry could improve the authenticity of metabolomic analysis.  相似文献   

17.
18.
Impurities in streptomycin (STR) and dihydrostreptomycin (DHS) were investigated by hydrophilic interaction chromatography/electrospray ionization quadrupole ion trap/time‐of‐flight mass spectrometry (HILIC/ESI‐QIT/TOFMS). Samples were separated on a fused‐core silica column (100 mm × 2.1 mm i.d., particle size: 2.7 µm) with isocratic elution using 200 mM ammonium formate buffer (pH 4.5) and acetonitrile as mobile phase. Constant neutral loss survey in accurate mass measurement was carried out by QIT/TOFMS. Formulae, chemical structures of impurities in an STR sample were suggested with supporting results on the probable pathways of STR biosynthesis by Streptomyces griseus. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
20.
The performances of gas chromatography with mass spectrometry and of comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two‐dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution–alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity‐exposed samples. Examination of the results confirmed the outperformance of comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in Dmagna samples. The peak areas of multivariate curve resolution–alternating least squares resolved elution profiles in every sample analyzed by comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt‐exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de‐regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号