首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) backbone and poly(2‐vinylpyridine) side chains, were synthesized by successive single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was prepared by sequential SET‐LRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as the catalytic system. The obtained diblock copolymer was transformed into the macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was used for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐vinylpyridine)] double hydrophilic graft copolymer. ATRP of 2‐vinylpyridine was initiated by the macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as the catalytic system. The synthesis of both the backbone and the side chains are controllable. Thermo‐ and pH‐responsive schizophrenic micellization behaviors were investigated by 1H NMR, fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (T ≥ 32 °C), whereas the aggregates turned into spheres with PEA‐g‐P2VP‐core accompanied with the lifting of pH values (pH ≥ 5.3) at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 15–23, 2010  相似文献   

2.
A series of well‐defined double hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐(diethylamino)ethyl methacrylate) (PDEA) side chains, were synthesized by successive atom transfer radical polymerization (ATRP). The backbone was firstly prepared by sequential ATRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained diblock copolymer was transformed into macroinitiator by reacting with 2‐chloropropionyl chloride. Next, grafting‐from strategy was employed for the synthesis of poly(N‐isopropylacrylamide)‐b‐[poly(ethyl acrylate)‐g‐poly(2‐(diethylamino)ethyl methacrylate)] (PNIPAM‐b‐(PEA‐g‐PDEA)) double hydrophilic graft copolymer. ATRP of 2‐(diethylamino)ethyl methacrylate was initiated by the macroinitiator at 40 °C using CuCl/hexamethyldiethylenetriamine as catalytic system. The molecular weight distributions of double hydrophilic graft copolymers kept narrow. Thermo‐ and pH‐responsive micellization behaviors were investigated by fluorescence spectroscopy, 1H NMR, dynamic light scattering, and transmission electron microscopy. Unimolecular micelles with PNIPAM‐core formed in acidic environment (pH = 2) with elevated temperature (≥32 °C); whereas, the aggregates turned into vesicles in basic surroundings (pH ≥ 7.2) at room temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5638–5651, 2008  相似文献   

3.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

4.
A series of ferrocene‐based well‐defined amphiphilic graft copolymers, consisting of hydrophilic poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and hydrophobic poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains were synthesized by successive single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was prepared by SET‐LRP of PEGMEA macromonomer, and it was then treated with lithium di‐isopropylamide and 2‐bromopropionyl bromide at ?78 °C to give PPEGMEA‐Br macroinitiator. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.32) were synthesized via ATRP of AEFC initiated by PPEGMEA‐Br macroinitiator, and the molecular weights of the backbone and side chains were both controllable. The electro‐chemical behaviors of graft copolymers were studied by cyclic voltammetry, and it was found that graft copolymers were more difficult to be oxidized, and the reversibility of electrode process became less with raising the content of PAEFC segment. The effects of the preparation method, the length of hydrophobic PAEFC segment, and the initial water content on self‐assembly behavior of PPEGMEA‐g‐PAEFC graft copolymers in aqueous media were investigated by transmission electron microscopy. The morphologies of micelles could transform from cylinders to spheres or rods with changing the preparation condition and the length of side chains. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A well‐defined double hydrophilic graft copolymer, with polyacrylate as backbone, hydrophilic poly(ethylene glycol) and poly(methacrylic acid) as side chains, was synthesized via successive atom transfer radical polymerization followed by the selective hydrolysis of poly(methoxymethyl methacrylate) side chains. The grafting‐through strategy was first used to prepare poly[poly(ethylene glycol) methyl ether acrylate] comb copolymer. The obtained comb copolymer was transformed into macroinitiator by reacting with lithium diisopropylamine and 2‐bromopropionyl chloride. Afterwards, grafting‐from route was employed for the synthesis of poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methoxymethyl methacrylate) amphiphilic graft copolymer. The molecular weight distribution of this amphiphilic graft copolymer was narrow. Poly(methoxymethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections. The final product, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methacrylate acid), was obtained by selective hydrolysis of poly(methoxymethyl methacrylate) side chains under mild conditions without affecting the polyacrylate backbone. This double hydrophilic graft copolymer was found be stimuli‐responsive to pH and ionic strength. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4056–4069, 2008  相似文献   

7.
A well‐defined amphiphilic graft copolymer, consisting of hydrophobic polyallene‐based backbone and hydrophilic poly(N‐isopropylacrylamide) (PNIPAM) side chains, was prepared by the combination of living coordination polymerization, single electron transfer‐living radical polymerization (SET‐LRP), and the grafting‐from strategy. First, the double‐bond‐containing backbone was prepared by [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO). Next, the pendant hydroxyls in every repeating unit of poly(6‐methyl‐1,2‐heptadiene‐4‐ol) (PMHDO) homopolymer were treated with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. Finally, PNIPAM side chains were grown from PMHDO backbone via SET‐LRP of N‐isopropylacrylamide initiated by PMHDO‐Cl macroinitiator in N,N‐dimethylformamide/2‐propanol using copper(I) chloride/tris(2‐(dimethylamino)ethyl)amine as catalytic system to afford PMHDO‐g‐PNIPAM graft copolymers with a narrow molecular weight distribution (Mw/Mn = 1.19). The critical micelle concentration (cmc) in water was determined by fluorescence probe technique and the effects of pH and salinity on the cmc of PMHDO‐g‐PNIPAM were also investigated. The micellar morphology was found to be spheres using transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
A series of well‐defined ferrocene‐based amphiphilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). A new ferrocene‐based monomer, 2‐(acryloyloxy)ethyl ferrocenecarboxylate (AEFC), was prepared first and it can be polymerized via ATRP in a controlled way using methyl 2‐bromopropionate as initiator and CuBr/PMDETA as catalytic system in DMF at 40 °C. PNIPAM‐b‐PEA backbone was synthesized by sequential SET‐LRP of NIPAM and HEA at 25 °C using CuCl/Me6TREN as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with α‐bromoisobutyryl bromide. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) were synthesized via ATRP of AEFC initiated by the macroinitiator. The electro‐chemical behaviors of PAEFC homopolymer and PNIPAM‐b‐(PEA‐g‐PAEFC) graft copolymer were studied by cyclic voltammetry. Micellar properties of PNIPAM‐b‐(PEA‐g‐PAEFC) were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4346–4357, 2009  相似文献   

9.
A series of well‐defined double hydrophilic double‐grafted copolymers, consisting of polyacrylate backbone, hydrophilic poly(2‐(diethylamino)ethyl methacrylate) and poly(ethylene glycol) side chains, were synthesized by successive atom transfer radical polymerization. The backbone, poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) comb copolymer, was firstly prepared by ATRP of PEGMEA macromonomer via the grafting‐through route followed by reacting with lithium diisopropylamide and 2‐bromopropionyl chloride to give PPEGMEA‐Br macroinitiator of ATRP. Finally, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(2‐(diethylamino)ethyl methacrylate) graft copolymers were synthesized by ATRP of 2‐(diethylamino)ethyl methacrylate using PPEGMEA‐Br macroinitiator via the grafting‐from route. Poly(2‐(diethylamino)ethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections, which is tolerant of both acidic and basic environment. The molecular weights of both backbone and side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.39). The results of fluorescence spectroscopy, dynamic laser light scattering and transmission electron microscopy showed this double hydrophilic copolymer was stimuli‐responsive to both pH and salinity. It can aggregate to form reversible micelles in basic surroundings which can be conveniently dissociated with the addition of salt at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3142–3153, 2009  相似文献   

10.
A microphase‐separated, amphiphilic graft copolymer consisting of a poly (vinyl chloride) (PVC) backbone and poly(oxyethylene methacrylate) (POEM) side chains, (PVC‐g‐POEM at 62:38 wt %) was synthesized via atom transfer radical polymerization (ATRP). Nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM) clearly revealed that the “grafting from” method using ATRP was successful and that the graft copolymer molecularly self‐assembled into discrete nanophase domains of continuous PVC and isolated POEM regions. The self‐assembled graft copolymer film was used to template the growth of silver nanoparticles in solid state by introducing a AgCF3SO3 precursor and a UV irradiation process. The in situ formation of silver nanoparticles in the graft copolymer template film was confirmed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering. FTIR spectroscopy and X‐ray photoelectron spectroscopy also demonstrated the selective incorporation and in situ formation of silver nanoparticles within the hydrophilic POEM domains, presumably due to strong interactions between the silver and the ether oxygen in POEM. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3911–3918, 2008  相似文献   

11.
A novel double brush‐shaped copolymer with amphiphilic polyacrylate‐b‐poly(ethylene glycol)‐b‐poly acrylate copolymer (PA‐b‐PEG‐b‐PA) as a backbone and thermosensitive poly(N‐isopropylacrylamide) (PNIPAM) long side chains at both ends of the PEG was synthesized via an atom transfer radical polymerization (ATRP) route, and the structure was confirmed by FTIR, 1H NMR, and SEC. The thermosensitive self‐assembly behavior was examined via UV‐vis, TEM, DLS, and surface tension measurements, etc. The self‐assembled micelles, with low critical solution temperatures (LCST) of 34–38 °C, form irregular fusiform and/or spherical morphologies with single, double, and petaling cores in aqueous solution at room temperature, while above the LCST the micelles took on more regular and smooth spherical shapes with diameter ranges from 45 to 100 nm. The micelle exhibits high stabilities even in simulated physiological media, with low critical micellization concentration (CMC) up to 5.50, 4.89, and 5.05 mg L?1 in aqueous solution, pH 1.4 and 7.4 PBS solutions, respectively. The TEM and DLS determination reveled that the copolymer micelle had broad size distribution below its LCST while it produces narrow and homogeneous size above the LCST. The cytotoxicity was investigated by MTT assays to elucidate the application potential of the as‐prepared block polymer brushes as drug controlled release vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
A series of well‐defined amphiphilic graft copolymer containing hydrophobic polyallene‐based backbone and hydrophilic poly(2‐(diethylamino)ethyl acrylate) (PDEAEA) side chains was synthesized by sequential living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO) and single electron transfer‐living radical polymerization (SET‐LRP) of 2‐(diethylamino)ethyl acrylate (DEAEA). Ni‐catalyzed living coordination polymerization of MHDO was first performed in toluene to give a well‐defined double‐bond‐containing poly(6‐methyl‐1,2‐heptadiene‐4‐ol) (PMHDO) homopolymer with a low polydispersity (Mw/Mn = 1.10). Next, 2‐chloropropionyl chloride was used for the esterification of pendant hydroxyls in every repeating unit of the homopolymer so that the homopolymer was converted to PMHDO‐Cl macroinitiator. Finally, SET‐LRP of DEAEA was initiated by the macroinitiator in tetrahydrofuran/H2O using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system to afford well‐defined PMHDO‐g‐PDEAEA graft copolymers (Mw/Mn ≤ 1.22) through the grafting‐from strategy. The critical micelle concentration (cmc) was determined by ?uorescence spectroscopy with N‐phenyl‐1‐naphthylamine as probe and the micellar morphology was visualized by transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
A series of perfluorocyclobutyl (PFCB) aryl ether‐based amphiphilic diblock copolymers containing hydrophilic poly(acrylic acid) (PAA) and fluorophilic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) segments were synthesized via successive atom transfer radical polymerization (ATRP). 2‐MBP‐initiated and CuBr/N,N,N,N,N″‐pentamethyldiethylenetriamine‐catalyzed ATRP homopolymerization of the PFCB‐containing methacrylate monomer, p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate, can be performed in a controlled mode as confirmed by the fact that the number‐average molecular weights (Mn) increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.38. The block copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.36) were synthesized by ATRP using Br‐end‐functionalized poly(tert‐butyl acrylate) (PtBA) as macroinitiator followed by the acidolysis of hydrophobic PtBA block into hydrophilic PAA segment. The critical micelle concentrations of the amphiphilic diblock copolymers in different surroundings were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the micelles were investigated by transmission electron microscopy and dynamic laser light scattering, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Cellulose‐based macroinitiators with predetermined number of initiation sites were synthesized by acylation of microcrystalline cellulose AVICEL PH‐101 with 2‐bromoisobutyryl bromide under homogeneous reaction conditions in the N,N‐dimethylacetamide/LiCl solvent system. The influence of different methods of cellulose activation on acylation efficiency and reproducibility was investigated. Best results were obtained using thermal activation under reduced pressure or the newly introduced protocol based on solvent exchange to 1,4‐dioxane. Prepared macroinitiators were used for grafting with styrene and methyl methacrylate (MMA) using optimized atom transfer radical polymerization reaction conditions to achieve well‐controlled polymerizations with high initiation efficiency. For MMA grafting, the initiation efficiency was shown to be dependent on certain reaction conditions, such as type of solvent, monomer concentration, or the presence of a sacrificial initiator. In addition, single‐electron transfer living radical polymerization with Cu(0) as the catalyst was used for the first time to prepare cellulose‐graft‐polystyrene and cellulose‐graft‐poly(MMA) copolymers in a homogeneous phase. In summary, homogeneous reaction conditions, stoichiometric control in the preparation of macroinitiators, and controlled grafting jointly allowed for an extensive control of copolymers architecture, that is, density of grafting, composition, and molecular parameters of grafts. Moreover, some of the prepared copolymers were characterized by static and dynamic light scattering and microscopic techniques (transmission electron microscopy and atomic force microscopy). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Polysulfone‐g‐poly(N‐isopropylacrylamide) (PSf‐g‐PNIPAAm) graft copolymers were prepared from atom transfer radical polymerization of NIPAAm using chloromethylated PSf as a macro‐initiator. The chain lengths of PNIPAAm of the graft copolymers were controllable with polymerization reaction time. The chemical structures of the graft copolymers were characterized with FTIR, NMR, and elemental analysis and their amphiphilic characteristics were examined and discussed. The PSf‐g‐PNIPAAm graft copolymers and the nanoparticles made from the graft copolymers exhibited repeatable temperature‐responsive properties in heating–cooling cycles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4756–4765, 2008  相似文献   

16.
Well‐defined high oil‐absorption resin was successfully prepared via living radical polymerization on surface of polystyrene resin‐supported N‐chlorosulfonamide group utilizing methyl methacrylate and butyl methacrylate as monomers, ferric trichloride/iminodiacetic acid (FeCl3/IDA) as catalyst system, pentaerythritol tetraacrylate as crosslinker, and L ‐ascorbic acid as reducing agent. The polymerization proceeded in a “living” polymerization manner as indicated by linearity kinetic plot of the polymerization. Effects of crosslinker, catalyst, macroinitiator, reducing agent on polymerization and absorption property were discussed in detail. The chemical structure of sorbent was determined by FTIR spectrometry. The oil‐absorption resin shows a toluene absorption capacity of 21 g g?1. The adsorption of oil behaves as pseudo‐first‐order kinetic model rather than pseudo‐second‐order kinetic model. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
A series of new functional poly(ethylene‐co‐vinyl alcohol)‐g‐polystyrene graft copolymers (EVAL‐g‐PS) with controlled molecular weight (Mn = 38,000–94,000 g mol?1) and molecular weight distribution (Mw/Mn = 2.31–3.49) were synthesized via a grafting from methodology. The molecular structure and component of EVAL‐g‐PS graft copolymers were confirmed by the analysis of their 1H NMR spectra and GPC curves. The porous films of such copolymers were fabricated via a static breath‐figure (BF) process. The influencing factors on the morphology of such porous films, such as solvent, temperature, polymer concentration, and molecular weight of polymer were investigated. Ordered porous film and better regularity was fabricated through a static BF process using EVAL‐g‐PS solution in CHCl3. Scanning electron microscopy observation reveals that the EVAL‐g‐PS graft copolymer is an efficient compatibilizer for the blend system of low‐density polyethylene/polystyrene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 516–524  相似文献   

18.
In this study, the polymerization of (2‐hydroxyethyl) acrylate (HEA), in polar media, using Cu(0)‐mediated radical polymerization also called single‐electron transfer–living radical polymerization (SET‐LRP) is reported. The kinetics aspects of both the homopolymerization and the copolymerization from a poly(ethylene oxide) (PEO) macroinitiator were analyzed by 1H NMR. The effects of both the ligand and the solvent were studied. The polymerization was shown to reach very high monomer conversions and to proceed in a well‐controlled fashion in the presence of tris[2‐(dimethylamino)ethyl]amine Me6‐TREN and N, N,N′, N″, N″‐pentamethyldiethylenetriamine (PMDETA) in dimethylsulfoxide (DMSO). SET‐LRP of HEA was also led in water, and it was shown to be faster than in DMSO. In pure water, Me6‐TREN allowed a better control over the molar masses and polydispersity indices than PMDETA and TREN. Double hydrophilic PEO‐b‐PHEA block copolymers, exhibiting various PHEA block lengths up to 100 HEA units, were synthesized, in the same manner, from a bromide‐terminated PEO macroinitiator. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Well‐defined H‐shaped pentablock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM), poly(N,N‐dimethylaminoethylacrylamide) (PDMAEMA), and poly(ethylene glycol) (PEG) with the chain architecture of (A/B)‐b‐C‐b‐(A/B) were synthesized by the combination of single‐electron‐transfer living radical polymerization, atom‐transfer radical polymerization, and click chemistry. Single‐electron‐transfer living radical polymerization of NIPAM using α,ω azide‐capped PEG macroinitiator resulted in PNIPAM‐b‐PEG‐b‐PNIPAM with azide groups at the block joints. Atom‐transfer radical polymerization of DMAEMA initiated by propargyl 2‐chloropropionate gave out α‐capped alkyne‐PDMAEMA. The H‐shaped copolymers were finally obtained by the click reaction between PNIPAM‐b‐PEG‐b‐PNIPAM and alkyne‐PDMAEMA. These copolymers were used to prepare stable colloidal gold nanoparticles (GNPs) in aqueous solution without any external reducing agent. The formation of GNPs was affected by the length of PDMAEMA block, the feed ratio of the copolymer to HAuCl4, and the pH value. The surface plasmon absorbance of these obtained GNPs also exhibited pH and thermal dependence because of the existence of PNIAPM and PDAMEMA blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号