首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melamine salt of pentaerythritol phosphate kaolin (MPPK) was synthesized by the reaction of pentaerythritol phosphate with kaolin (K) and melamine. The structure of MPPK was confirmed by EDXS, 1H NMR, FTIR, and XRD. MPPK was blended with polypropylene (PP) at different loading levels. Thermogravimetric analysis (TGA) results showed that MPPK improved the thermal stability of PP at high temperatures in all PP composites. Vertical burning rate test manifested that PP composites can achieve V0 at 20% and 25% MPPK loading levels. Cone calorimeter data exhibited that addition of 25% MPPK to PP reduced peak of heat release rate (pHRR) and total heat release (THR) by 86% and 76% and increased the char residue after test to 67%. The results of PP/25% MPPK composite were compared with the data obtained from PP containing 25% K and 25% of traditional intumescent flame retardant composed of melamine phosphate (MP), pentaerythritol (PE), and K. The outcomes indicated that MPPK was more efficient in flame retardancy than the other systems. The digital photographs and SEM images for char residue demonstrated that MPPK succeeded in forming cellular and coherent char layer on the PP surface. The main advantage of adding 25% MPPK to PP was its ability to preserve nearly the inner half of the sample without burning after cone calorimeter test.  相似文献   

2.
3.
In present work, silica pillared montmorillonite material (C‐SiO2‐OMT) was prepared via the sol–gel method, and the influence of the powder on thermal stability and flammability performance of polypropylene (PP) composites was investigated. Characterization of C‐SiO2‐OMT, elucidated with X‐ray diffraction, transmission electron microscopy, and N2 adsorption–desorption, suggested that the powder had a mesoporous lamellar structure with high specific surface area and mesoporous volume. The formation of porous structure of C‐SiO2‐OMT was more conducive than organically modified montmorillonite (OMT) to slowing the volatilization of pyrolytic products generated during thermal degradation process, which led to PP/C‐SiO2‐OMT microcomposite show better thermal stability than PP/OMT nanocomposite at high temperature range. Flammability properties of these polymer materials evaluated by microscale combustion calorimetry, and cone calorimetry showed a contrary tendency, but C‐SiO2‐OMT holds high promise to reduce the smoke yield. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Amino‐functionalized nanosilica (SiO2‐NH2) was prepared through cocondensation method using aminopropyltriethoxysilane as comonomer to hydrolyze and cocondense with tetraethylorthosilicate. The synergistic effect of combination of ammonium polyphosphate and pentaerythritol with SiO2‐NH2 on the thermal and flame‐retardant properties of intumescent flame‐retardant (IFR) polypropylene (PP) has been investigated by thermogravimetric analysis (TGA), scanning electron microscopy, Raman spectra, X‐ray diffraction (XRD), limiting oxygen index (LOI), and UL 94 tests. When 1.0 wt.% SiO2‐NH2 was added, the LOI value of the PP/IFR composite with 25 wt.% of IFR increased from 26.6% to 31.7%, while the UL 94 rating raised from not classified to V‐0. The TGA data demonstrated that the SiO2‐NH2 nanoparticles increased the charred residue of the PP/IFR composites. The morphological structures and the orderliness of the charred residue proved that SiO2‐NH2 promoted the formation of compact intumescent charred layer, which effectively protected the underlying polymer from burning. The XRD patterns of the charred residue indicated that nanosilica reacted with APP to form SiP2O7 crystal structure during combustion, which was beneficial to the formation of compact charred layers. In comparison with the inorganic SiO2‐cal nanoparticles, the amino‐functionalized nanosilica revealed much more efficient synergistic flame‐retardant effect due to the difference of surface properties.  相似文献   

5.
A new montmorillonite intercalation nickel compound (MINC) was devised and synthesized. MINC was modified by cetyl trimethyl ammonium bromide to obtain organic MINC (OMINC). The results of X‐ray diffraction show that the layer spacing was expanded by nickel compound and cetyl trimethyl ammonium bromide, indicating that OMINC was prepared successfully. OMINC was further incorporated into polypropylene (PP)/intumescent flame retardant (IFR) system for preparing PP/IFR/OMINC nanocomposites via melt blending. In thermogravimetric analysis, PP/IFR/OMINC nanocomposites exhibit an enhanced thermal behavior and residue amount. Vertical burning test (UL‐94) and limited oxygen index results show that PP/IFR/OMINC nanocomposites have excellent flame retardance, i.e. the limited oxygen index value at 29.5 and UL‐94 V0 level for PP/IFR/4 wt% OMINC nanocomposites. According to cone calorimeter testing, the addition of OMINC brings an efficient reduction of flammability parameters, such as peak heat release rate, total heat release, and smoke production rate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In order to explore the structure mode of intumescent flame retardants (IFRs) with higher efficiency, IFR particles with joint‐aggregation structure (@IFR) were obtained through the treatment of ammonium polyphosphate (APP) and a charring agent (PT‐Cluster) in their aqueous solution. Then, the joint‐aggregation IFR effect was researched using its application in polypropylene. In case of 20 wt% IFR loading, the limiting oxygen index (LOI) value of @IFR/PP was 1.1% higher than that of 15APP/5PT‐Cluster/PP mixture, and a 1.6 mm‐thick @IFR/PP composite passed the UL 94 V‐2 rating test, while 15APP/5PT‐Cluster/PP demonstrated no flame‐retardant rating in UL 94 vertical burning tests. In a cone calorimeter test, @IFR also had a better inhibition effect on heat release. The average heat release rate (av‐HRR) value during 0 to 120 seconds of @IFR/PP was only 41 kW m?2, which was 33.9% lower than that of the 15APP/5PT‐Cluster/PP. Furthermore, the peak heat release rate (pk‐HRR) of @IFR/PP was 20.5% lower than that of 15APP/5PT‐Cluster/PP, and the time to pk‐HRR of @IFR/PP was 710 seconds, while that of 15APP/5PT‐Cluster/PP was 580 seconds. The better inhibition effect on HRR and the delay of time to pk‐HRR were caused by the joint‐aggregated structure of @IFR, which can rapidly react to form stable and efficient char layers. This kind of join‐aggregation IFR effect has great significance in suppressing the spread of fire in reality. In addition, @IFR also increased the mechanical properties of PP composites slightly compared with the APP/PT‐Cluster mixture.  相似文献   

7.
Ferric pyrophosphate (FePP) was added to an ammonium polyphosphate (APP)—pentaerythritol (petol) intumescent flame retardant (IFR) system in polypropylene (PP) matrix, with subsequent investigation into the synergistic effect between FePP and the IFRs. Limited oxygen index (LOI), UL‐94 test and cone calorimeter test were employed to study the flame retardance of the synthesized flame retardant PP composites. Thermogravimetric analysis (TGA) and thermogravimetric analysis‐infrared spectrometry (TG‐IR) were used to study their thermal degradation characteristics and gas products. TG‐IR results demonstrate that there is no Fe (CO)5 produced from PP/IFR/FePP system, which implies that the flame retardant mechanism of PP/IFR/FePP system is in the condensed phase rather than in the gas phase. Real time FTIR and X‐ray photoelectron spectroscopy (XPS) were used to monitor the thermal oxidative stability and the high temperature performance of the flame retardant PP composites. The real time FTIR spectra show that all peaks around 2900 cm?1 almost disappear at 380°C for the PP/IFR system, meaning that PP decomposes completely at this temperature. But after the addition of 2 wt%wt% FePP, the peaks still exist till 400°C. XPS shows that the aliphatic carbon atom content in PP/23 wt%wt% IFR/2 wt%wt% FePP (63.8%) is much higher than the one without FePP, and the total oxygen atom content in PP/23 wt%wt% IFR/2 wt%wt% FePP is just 19.1%, while the one in PP/25 wt% IFR is as high as 35.7%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
《先进技术聚合物》2018,29(9):2449-2456
In this work, a novel hyperbranched and phosphorus‐containing triazine derivative (HPCFA) is synthesized. HPCFA is used as charring‐foaming agent and combined with ammonium polyphosphate (APP) as intumescent flame retardant to flame retard polypropylene (PP). PP/HPCFA/APP composite can achieve limited oxygen index value of 31% and pass UL 94V‐0 rating by addition of 20 wt% HPCFA/APP (1/2, w/w). Besides, HPCFA is compared with another hyperbranched charring‐foaming agent (HCFA). HPCFA and HCFA have similar chemical structure, and their only difference is that HPCFA has phosphorus‐containing unit in the main chain compared with HCFA. HPCFA/APP system exhibits superior flame retardancy compared with HCFA/APP system. Char residue analysis demonstrates that HPCFA/APP system can form denser and more compact char layer in comparison with that of HCFA/APP system.  相似文献   

9.
This work aims to investigate the fire retardant properties of a novel type of high‐density polyethylene composites. Our intumescent system consists in using classical flame retardants such as ammonium polyphosphate, pentaerythritol in combination with porous mesostructured silica (SBA‐15) fillers. Prior to use, SBA‐15 was chemically modified using different organic and inorganic grafts in order to obtain some specific properties, such as an improved compatibility with the polymer, or different types of surface acidity in order to increase charring reactions. Limiting oxygen index, UL‐94, pyrolysis flow combustion calorimetry and thermogravimetric analysis were used to assess the burning behavior and thermal stability, respectively, of the processed composites. By keeping the total amount of additives always equal to 25 wt%, the better flammability characteristics were in general obtained at low SBA‐15 loadings (<2 wt%). X‐ray diffraction and Fourier transform infrared spectroscopy analyses of the residues showed that the formation of a barrier mainly constituted by crystalline silicon phosphates is probably a key to enhance the fire properties. Further slight improvements brought by the surface modification of SBA‐15 nanofillers are discussed according to type of incorporated particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The synergistic effects of 4A zeolite (4A) on the thermal degradation, flame retardancy and char formation of a novel halogen‐free intumescent flame retardant polypropylene composites (PP/IFR) were investigated by the means of limiting oxygen index (LOI), vertical burning test (UL‐94), digital photos, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), cone calorimeter test (CCT), laser Raman spectroscopy (LRS) and X‐ray photoelectron spectroscopy (XPS). It was found that a small amount of 4A could dramatically enhance the LOI value of the PP/IFR systems and the materials could pass the UL‐94 V‐0 rating test. Also, it could enhance the fire retardant performance with a great reduction in combustion parameters of PP/IFR system from CCT test. The morphological structures observed by digital and SEM photos revealed that 4A could promote PP/IFR to form more continuous and compact intumescent char layer. The LRS measurement, XPS and TGA analysis demonstrated that the compactness and strength of the outer char surface of the PP/IFR/4A system was enhanced, and more graphite structure was formed to remain more char residue and increase the crosslinking degree. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The massive accumulation of phosphorus tailings (PT) not only occupies land resources and also causes great threat to ecological environment and human security. It is of great significance to explore the resource utilization of PT in some fields. Herein, aluminum hypophosphite (AHP) and PT are blended together to enhance the flame retardancy of thermoplastic polyurethane (TPU) composites, and the synergistic effects between AHP and PT are investigated systematically. Cone calorimeter test (CCT) results indicate that the peak heat release rate (PHRR) and total heat release (THR) of the samples containing 25 wt% AHP are decreased by 89% and 68%, respectively, and the total smoke release (TSR) show a reduction of 58.8%, in comparison with those of neat TPU. For the sample TPU/22.5AHP/2.5PT, the PHRR, THR, and TSR are decreased by 91.2%, 70%, and 63%, respectively. Scanning electron microscopy (SEM) analysis results demonstrate that the addition of PT can facilitate the generation of dense and compact char layers, preventing the release of heat and smoke effectively. All the abovementioned results indicate that the synergistic effects are existed between AHP and PT for enhancing the fire safety of TPU composites, which can provide a new way for the utilization of PT.  相似文献   

12.
For the improved dispersion of montmorillonite (MMT) in a polypropylene (PP) matrix, PP/MMT nanocomposites prepared via direct melt intercalation were further subjected to oscillating stress achieved by dynamic packing injection molding. The shear‐induced morphological changes were investigated with an Instron machine, wide‐angle X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The original nanocomposites possessed a partly intercalated and partly exfoliated morphology. A transformation of the intercalated structure into an exfoliated structure occurred after shearing, and a more homogeneous dispersion of MMT in the PP matrix was obtained. However, the increase of the exfoliated structure was accompanied by the scarifying of the orientation of MMT layers along the shear direction. Some bended or curved MMT layers were found for the first time by TEM after shearing. However, the orientation of PP chains in the PP/MMT nanocomposites became very difficult under an external shear force; this indicated that the molecular motion of PP chains intercalated between MMT layers was highly confined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1–10, 2003  相似文献   

13.
The combination of catalyzing carbonization and free‐radical quenching mechanism is proposed to be a promising strategy for the preparation of high‐efficiency flame‐retardant polypropylene (PP). Herein, a novel functionalized zirconium phosphate (RQZrP) nanosheet with free‐radical quenching capability was fabricated by decorating macromolecular N‐alkoxy hindered amine (MNOR) onto the surface of ZrP. It was combined with an intumescent flame retardant (IFR) to flame‐retard PP. The results showed that there was a good synergism between RQZrP and IFR, which effectively improved the fire safety of PP. When the content of RQZrP was 2 wt% and IFR was 23 wt%, the limiting oxygen index (LOI) of PP increased from 19.0% to 33.0%, and it achieved a UL‐94 V‐0 rating. Meanwhile, the peak heat release rate (PHRR), total heat release (THR), carbon monoxide production (COP), and carbon dioxide production (CO2P) were significantly decreased. It revealed that nitroxyl radicals generated by RQZrP could capture alkyl radicals and peroxy radicals that produced during the degradation and combustion of PP. Meanwhile, RQZrP acted as a solid acid that catalyzed PP chains rapidly cross‐linking to form char on its surface, and it also played as a supporting skeleton to enhance the strength and compactness of the char layer, thus effectively preventing the transmission of heat, oxygen, and combustible gases.  相似文献   

14.
The flame retardancy and thermal degradation properties of polypropylene (PP) containing intumescent flame retardant additives, i.e. melamine pyrophosphate (MPyP) and charring‐foaming agent (CFA) were characterized by limiting oxygen index (LOI), UL 94, cone calorimeter, microscale combustion calorimetry, and thermogravimetric analysis (TGA). It has been found that the PP material containing only MPyP does not show good flame retardancy even at 30% additive level. Compared with the PP/MPyP binary system, the LOI values of the PP/MPyP/CFA ternary materials at the same additive loading are all increased, and UL 94 rating is raised to V‐0 from no rating (PP/MPyP). The cone calorimeter results show that the heat release rate and mass loss rate of some ternary materials decrease in comparison with the binary material. The microscale combustion calorimetry results indicate that the sample containing 22.5 wt% MPyP and 7.5 wt% CFA has the lowest heat release rate among all samples. The TGA results show that the thermal stability of the materials increases with the addition of MPyP, while decreases with the addition of CFA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Nanosized carbon black (CB) was introduced into polypropylene/carbon nanotubes (PP/CNTs) nanocomposites to investigate the effect of multi‐component nanofillers on the thermal stability and flammability properties of PP. The obtained ternary nanocomposites displayed dramatically improved thermal stability compared with neat PP and PP/CNTs nanocomposites. Moreover, the flame retardancy of resultant nanocomposites was greatly improved with a significant reduction in peak heat release rate and increase of limited oxygen index value, and it was strongly dependent on the content of CB. This enhanced effect was attributed mainly to the formation of good carbon protective layers by CB and CNTs during combustion. Rheological properties further confirmed that CB played an important role on promoting the formation of crosslink network on the base of PP/CNTs system, which were also responsible for the improved thermal stability and flame retardancy of PP. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The performances of the novel intumescent flame retardant (IFR) polypropylene (PP) composites containing melamine phosphate (MP) and tris(1‐oxo‐2,6,7‐trioxa‐1‐phosphabicyclo[2,2,2]methylene‐4)phosphate (TPMP) were investigated. The flame retardancy of IFR‐PP system was characterized by limiting oxygen index (LOI) and UL 94 and cone calorimeter. The morphology of the char obtained after cone calorimeter testing was studied by scanning electron microscopy (SEM). The thermal oxidative degradation (TOD) of the composites was investigated by using thermogravimetric analysis (TGA) and real‐time Fourier transform infrared spectroscopy (RT‐FTIR). Compared with the PP/ TPMP or PP/ MP binary composite, at the same addition level, the LOI values of the PP/MP/TPMP ternary composites increase and reach V‐0 at the suitable MP/TPMP ratio. The results of TGA and RT‐FTIR showed the existence of the interaction between IFR and PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Piperazine cyanurate (PCA) is designed and synthesized via hydrogen‐bonding self‐assembly reactions between piperazine and cyanuric acid. Chemical structure and morphology of PCA are investigated by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The prepared PCA is combined with ammonium polyphosphate (APP) to prepare flame‐retardant polypropylene (PP) composites. Thermostability, flammability, and combustion characteristics of PP composites are analyzed. The maximum thermal decomposition rate of flame‐retarded PP composites has an apparent reduction compared with that of pure PP, and obvious char is left for this intumescent flame retardant (IFR) system of APP and PCA. A high limiting oxygen index value and UL‐94 V‐0 rating are achieved with addition of APP and PCA. In cone calorimetry test, heat and smoke releases of PP are significantly decreased by this IFR system. Gaseous decomposition products during the thermal decomposition of flame‐retardant composites are studied. Chemical structure and morphology of char residues are analyzed. The results illustrate that APP and PCA have a superb synergistic action in the aspect of improvement in fire safety of PP. A possible flame‐retardant mechanism is concluded to reveal the synergism between APP and PCA.  相似文献   

18.
Aluminum hypophosphite (AHP) was introduced into polylactide/intumescent flame retardant (PLA/IFR) systems by melt blending. The flame retardant and thermal properties of the PLA composites were investigated. The results suggest that a synergistic effect exists between IFR and AHP on the char formation and anti‐dripping behavior of PLA composites. The PLA/IFR composites containing 10 wt% IFR can pass the UL‐94 V‐0 rating but the test is accompanied by heavy melt dripping. For the PLA/AHP a UL‐94 V‐2 rating is obtained for the same loading of IFR. However, the composites containing 7 wt% IFR and 3 wt% AHP pass the UL‐94 V‐0 rating with modified dripping behavior. Moreover, the char from combustion of PLA/IFR is flexible but of poor quality. That for PLA/AHP is brittle with many cracks. In contrast, that for PLA/IFR/AHP is strong and compact. Thus it can resist the erosion due to heat and gas formation and protect the inside of the matrix. In addition, AHP causes the crosslinking among APP, which promotes the char formation and prevents the melt dripping. This is the main reason for the good flame retardant properties of PLA composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this study was to investigate and compare the flame retardant properties of boron compounds with respect to aluminum trihydroxide (ATH) in an epoxy system based on bisphenol A epichlorohydrin‐based epoxy resin and cycloaliphatic polyamine‐based hardener. Six different boron compounds including colemanite (C), ulexite (U), boric acid (BA), boric oxide (BO), melamine borate (MB) and guanidinium nonaborate (GB) were used as flame retardant additive. The flame retardant properties of epoxy‐based composites were investigated using limiting oxygen index (LOI), UL 94 standards both in vertical and horizontal position, thermogravimetric analysis, cone calorimeter and scanning electron microscopy. According to flammability test results, boron compounds except for C and U showed better performance than ATH. According to the LOI results, 40% BA containing sample had the highest LOI value of 28.5, while 30% MB, 35% GB and 40% BA containing samples had the highest UL 94V rating (V0). According to the cone calorimeter test results, all boron containing samples had better fire performances than ATH containing sample; 40 wt% BO containing sample showed the lowest peak heat release rate, average heat release rate and total heat release values. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Variable amounts of transition metal oxides (MO), such as MnO2, ZnO, Ni2O3, etc., were incorporated into blends of polypropylene (PP)/ammonium polyphosphate (APP)/dipentaerythritol (DPER) with the aim of studying and comparing their effects with main‐group MO on intumescent flame retardance (IFR). The PP/IFR/MO composites were prepared using a twin‐screw extruder, and the IFR behavior was evaluated through oxygen index and vertical burning tests. The progressive enhancement of flame retardancy has proved to be strongly associated with the interaction between APP and MO. With the aid of thermogravimetry (TG) analysis, Fourier transform infrared (FTIR) spectra and scanning electron microscopy, Ni2O3 has been shown to be the most effective among the aforementioned three MO. The flame‐retardant mechanism of the IFR system is also discussed in terms of catalytic charring, which relates to complex formation through the d‐orbitals of the transition metal elements. It is considered that the melt viscosity of a PP/APP/DPER blend containing Ni2O3 corresponds well to the gas release with increasing temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号